Пуанкаре предложил еще один способ описания многообразий — обобщение построения поверхностей Клейном. Как Клейн строил поверхности, склеивая стороны многоугольников, так Пуанкаре создавал n-мерные многообразия, склеивая грани n-мерных многогранников. Чтобы получить тор, нужно склеить противоположные грани квадрата без перекручивания. Аналогично, чтобы построить 3-мерный тор, нужно попарно склеить противоположные грани куба без перекручивания (см. рис. 22.4). 3-мерный тор — пример замкнутого ориентируемого 3-мерного многообразия.
Рис. 22.4. После склеивания соответственных граней получается тор
В абстрактном определении многообразия не говорится, где это многообразие «живет». Мы смогли определить бутылку Клейна и понять ее свойства, не зная, что она не может существовать в ℝ3
. Спрашивается: если дано n-мерное многообразие общего вида, всегда ли можно поместить его в евклидово пространство ℝm, так чтобы избежать самопересечений? Если да, то насколько большим должно быть m? Хасслер Уитни доказал, что любое n-мерное многообразие можно разместить в некотором евклидовом пространстве размерности не больше 2n. Этот результат называетсяВ главе 17 мы рассматривали теорему классификации для поверхностей. Каждая поверхность является либо сферой с ручками, либо сферой со скрещенными колпаками. Имеет смысл задаться вопросом, можно ли классифицировать n-мерные многообразия для n > 2. Оказывается, что это очень трудная задача. В главе 17 мы утверждали, что размерность n-мерного многообразия — топологический инвариант, т. е. 5-мерное многообразие не может быть гомеоморфно 7-мерному. Даже этот результат обосновать было нелегко. Только в 1911 году Брауэр доказал теорему об
Важность задач классификации не следует недооценивать. Один из главных открытых вопросов — какова форма Вселенной? Всем, кроме специалистов по теории струн, представляется, что мы живем в трехмерной Вселенной — гигантском 3-мерном многообразии (предположительно без края!). Каковы свойства этого многообразия? Конечен ли его диаметр, или оно простирается бесконечно? Верно ли, что оно топологически эквивалентно ℝ3
, или же оно имеет нетривиальные топологические свойства? И еще более странный вопрос — ориентируемо ли оно? Может ли случиться, что космонавт-правша улетит далеко от Земли и вернется левшой?Теперь, когда мы ввели понятие многообразия для любой размерности, естественно возникает вопрос, применима ли к ним формула Эйлера. Для ответа на него нам придется вернуться к многогранникам. Коши первым увидел нечто подобное обобщению формулы Эйлера на более высокие размерности198
. В той же статье, где он доказал формулу Эйлера путем проецирования многогранника на плоскость, был сформулирован и доказан многомерный ее аналог в одном частном случае. Коши доказал, что если пометить вершины, ребра и грани внутрь выпуклого многогранника, разбив его тем самым на S выпуклых многогранников, и обозначить V, E, F соответственно полное число вершин, ребер и граней (включая и внутренние), тоV — E + F — S = 1.
Для иллюстрации теоремы Коши рассмотрим разбиения октаэдра и куба на рис. 22.5. Новая грань внутри октаэдра разбивает его на два многогранника, поэтому S = 2. Имеется 6 вершин, 12 ребер и 9 граней. В полном соответствии с утверждением Коши, 6 — 12 + 9–2 = 1. Аналогично в кубе, разбитом на 3 многогранника, имеется 12 вершин, 22 ребра и 14 граней, и 12–22 + 14 — 3 = 1.
В 1852 году Людвиг Шлефли открыл вариант формулы Эйлера, справедливый для выпуклых многогранников любой размерности, но эта работа была опубликована только в 1901 году, когда его результаты уже были заново открыты другими199
. Пусть P — n-мерный многогранник, имеющий b0 вершин, b1 ребер, b2 граней и вообще bk граней размерности k. Шлефли представлял себе эти многогранники как полые оболочки, ограниченные (n–1) — мерными гранями, это означает, что bn = 0. Определим эйлерову характеристику как знакопеременную сумму числа граней разных размерностей: χ(P) = b0 — b1 + b2 —… ± bn–1. Шлефли заметил, что χ(Р) = 0, когда n нечетно, и χ(P) = 2, когда n четно.Рис. 22.5. Разбиение октаэдра и куба