Вернёмся ненадолго к проблеме Пуанкаре. И двумерная, и трёхмерная сфера односвязны, компактны и не имеют края. Вопрос в том, достаточно ли этих двух свойств для однозначного их определения. Однозначность понимается здесь в топологическом смысле, т. е. с точностью до гомеоморфии, ведь в топологии гомеоморфные геометрические фигуры не различаются, они считаются одной и той же фигурой (наподобие того, как одной и той же фигурой считаются конгруэнтные фигуры в школьной геометрии). Для двумерной сферы вопрос (который можно было бы назвать «двумерной проблемой Пуанкаре») ставится, следовательно, так: всякое ли двумерное односвязное компактное многообразие без края гомеоморфно двумерной сфере? Положительный ответ на этот вопрос был известен давно (и уж заведомо известен Пуанкаре). Если же заменить в нём слова «двумерное» и «двумерной» на «трёхмерное» и «трёхмерной», вопрос превращается в знаменитую проблему Пуанкаре, которая 100 лет не поддавалась решению; эту проблему можно назвать «трёхмерной проблемой Пуанкаре».
замечание.
У гипотезы Пуанкаре имеются и n-мерные версии, где n > 3. Эти версии формулируются менее элементарно, чем трёхмерная. Они тоже очень трудны, но все же найти их доказательства оказалось проще, чем получить доказательство трёхмерной гипотезы. Эта парадоксальная ситуация чем-то напоминает ту, что сложилась с установлением хроматических чисел поверхностей (см. конец главы 10). Там тоже самым трудным оказалось решить вопрос для сферы; найти хроматическое число для более сложных поверхностей и доказать, что оно является таковым, было делом более простым. В 1960-е гг. была доказана n-мерная гипотеза для всякого n ≥ 5, а для особенно трудного случая n = 4 в начале 1980-х гг. гипотезу доказал Майкл Хартли Фридман (Michael H. Freedman, р. 1951).Можно говорить и о гомеоморфии одномерных образований – линий. С точки зрения топологии их удобно воспринимать как тонкие резиновые нити, которые допустимо изгибать, растягивать и сжимать, но нельзя рвать и склеивать. Мы вправе теперь сказать, что обрывок
– это линия, гомеоморфная отрезку. Дуга окружности – обрывок, она гомеоморфна отрезку. Окружность гомеоморфна периметру квадрата и любой из линий на рис. 14, но не гомеоморфна ни линии, которая состоит из двух окружностей, пересекающихся в двух точках, ни восьмёрке, которую можно понимать как линию, состоящую из двух окружностей, соприкасающихся в одной точке; линия из окружностей, пересекающихся в двух точках, не гомеоморфна восьмёрке. Восьмёрка не гомеоморфна греческой букве θ, а буква В при одном начертании гомеоморфна букве θ, при другом – восьмёрке.(Читатель не должен видеть противоречия в том, что выпечку в форме цифры 8, или буквы θ, или буквы В мы выше объявили гомеоморфными: ведь выпечка суть не линии, а трёхмерные тела, и указанные её виды можно непрерывно деформировать один в другой.)
Инварианты, общие для всех гомеоморфных друг другу фигур, называются топологическими инвариантами
. Один такой инвариант мы уже знаем – это свойство односвязности. Предоставляем читателю осознать, что свойство односвязности действительно есть топологический инвариант, т. е. что фигура, гомеоморфная односвязной фигуре, и сама непременно односвязна. Все факты, относящиеся к геометрии положения вообще и в частности к тем задачам, которые были рассмотрены в конце главы 10, где речь шла о геометрии положения, являются топологическими инвариантами. Например, топологическим инвариантом является хроматическое число поверхности. Топология как раз и изучает топологические инварианты и в этом смысле включает в себя геометрию положения, но далеко не исчерпывается ею, поскольку среди инвариантов, изучаемых в «высокой» топологии, встречаются очень сложные и совершенно не наглядные.