Читаем Апология математики (сборник статей) полностью

В случае одномерных многообразий роль лоскутов выполняют куски нити. Желая придумать какой-нибудь термин, аналогичный термину «лоскут», мы оказались не способны найти что-либо более удачное, чем слово «обрывок». На языке геометрии обрывок – это линия, которую можно получить из отрезка деформацией, подобной той, с помощью которой мы получали лоскут из круга. Иными словами, обрывок – это то, что можно получить из отрезка, как угодно его изгибая, растягивая и сжимая; запрещаются только разрывы и склеивания. Одномерным компактным многообразием называется всякая линия, которую можно склеить из конечного числа обрывков. При этом подразумевается, что обрывки склеиваются своими концами: конец одного обрывка или не склеивается ни с чем (и тогда возникает край многообразия), или же склеивается с ровно одним концом ровно одного другого обрывка. При таком способе склеивания букву Т, которая служила для нас первым примером немногообразия, получить никак невозможно: при попытке склеить эту букву мы вынуждены будем в особой точке либо склеить один из обрывков с внутренней точкой другого, либо склеить концами сразу три обрывка. Нельзя получить и линию в форме восьмёрки. (При склеивании из лоскутов двумерных многообразий подразумевалось, что лоскуты склеиваются своими краями.) Примерами одномерных компактных многообразий могут служить отрезок и окружность, а также всё, что можно получить из этих фигур, деформируя их как угодно, но только без разрывов и склеиваний. Отрезок, а также всякая линия, которая может быть получена из него деформацией (например, конечный участок любого из тех графиков функций, которые проходят в школе), является одномерным компактным многообразием с краем. Окружность, а также всякая линия, которая может быть получена из неё деформацией (например, обе линии на рис. 14), являются одномерными компактными многообразиями без края. Других примеров одномерных компактных многообразий не существует. (Ни интервал, ни полуинтервал не являются компактными многообразиями.)

Можно ли склеить из обрывков прямую? Можно, но для этого потребуется бесконечное число обрывков. Склеить прямую из конечного числа обрывков невозможно; в силу ранее сказанного это значит, что прямая не компактна. Аналогично плоскость можно склеить из бесконечного числа лоскутов, но нельзя – из конечного; это значит, что плоскость не компактна. Покажем, как из бесконечного числа обрывков можно склеить полуинтервал. Возьмём прямую и будем строить на ней бесконечное число отрезков. Начнём с произвольного отрезка А0А1. Пусть его длина равна l. К концу А1 этого отрезка приклеим отрезок А1А2 длины l/2. К точке А2 приклеим отрезок А2А3 длины l/4. И будем подклеивать всё новые и новые отрезки, причём так, чтобы длина каждого отрезка составляла половину длины предыдущего. Из всех этих отрезков, число коих бесконечно, составится полуинтервал длины l + l/2 + l/4 + l/8 +… = 2l с концом в А0. А если ещё тем же способом подклеивать отрезки с другой стороны исходного отрезка, получится интервал. Надеемся, что читатель сумеет склеить из бесконечного количества лоскутов как открытый круг, так и открытый квадрат.



Мы в состоянии теперь дать общее определение одномерных или двумерных многообразий безотносительно к тому, являются они компактными или нет. Многообразие – это такая геометрическая фигура, которую можно склеить из конечного или бесконечного числа лоскутов (тогда многообразие двумерно) или обрывков (тогда многообразие одномерно).

Призываем читателя, прежде чем двигаться дальше, подумать, как следует определить трёхмерное многообразие.

Сперва надо указать те элементарные «кирпичики», из которых складывается любое трёхмерное многообразие. В случае двумерных многообразий такими «кирпичиками» были лоскуты, в случае одномерных многообразий – обрывки. Чтобы выдержать единство стиля, трёхмерные кирпичики мы назовём комками. Комок – это тело, которое можно получить из шара путём его деформации; при этом шар разрешается мять, растягивать и сжимать, но не разрешается делать склейки и разрывы. Вот пример запрещённой деформации: скатаем шар в цилиндр, а концы цилиндра склеим; мы получим тор, который комком не является. Трёхмерное многообразие – эта такая геометрическая фигура, которая может быть получена склеиванием конечного или бесконечного числа комков. Для склеивания шара, тора, гири с ручками достаточно конечного числа комков; поэтому все эти фигуры суть компактные многообразия. А вот ошкуренный шар или всё пространство можно склеить лишь из бесконечного количества комков, поэтому эти многообразия не являются компактными.

Перейти на страницу:

Похожие книги

1993. Расстрел «Белого дома»
1993. Расстрел «Белого дома»

Исполнилось 15 лет одной из самых страшных трагедий в новейшей истории России. 15 лет назад был расстрелян «Белый дом»…За минувшие годы о кровавом октябре 1993-го написаны целые библиотеки. Жаркие споры об истоках и причинах трагедии не стихают до сих пор. До сих пор сводят счеты люди, стоявшие по разные стороны баррикад, — те, кто защищал «Белый дом», и те, кто его расстреливал. Вспоминают, проклинают, оправдываются, лукавят, говорят об одном, намеренно умалчивают о другом… В этой разноголосице взаимоисключающих оценок и мнений тонут главные вопросы: на чьей стороне была тогда правда? кто поставил Россию на грань новой гражданской войны? считать ли октябрьские события «коммуно-фашистским мятежом», стихийным народным восстанием или заранее спланированной провокацией? можно ли было избежать кровопролития?Эта книга — ПЕРВОЕ ИСТОРИЧЕСКОЕ ИССЛЕДОВАНИЕ трагедии 1993 года. Изучив все доступные материалы, перепроверив показания участников и очевидцев, автор не только подробно, по часам и минутам, восстанавливает ход событий, но и дает глубокий анализ причин трагедии, вскрывает тайные пружины роковых решений и приходит к сенсационным выводам…

Александр Владимирович Островский

Публицистика / История / Образование и наука
Сталин. Битва за хлеб
Сталин. Битва за хлеб

Елена Прудникова представляет вторую часть книги «Технология невозможного» — «Сталин. Битва за хлеб». По оценке автора, это самая сложная из когда-либо написанных ею книг.Россия входила в XX век отсталой аграрной страной, сельское хозяйство которой застыло на уровне феодализма. Три четверти населения Российской империи проживало в деревнях, из них большая часть даже впроголодь не могла прокормить себя. Предпринятая в начале века попытка аграрной реформы уперлась в необходимость заплатить страшную цену за прогресс — речь шла о десятках миллионов жизней. Но крестьяне не желали умирать.Пришедшие к власти большевики пытались поддержать аграрный сектор, но это было технически невозможно. Советская Россия катилась к полному экономическому коллапсу. И тогда правительство в очередной раз совершило невозможное, объявив всеобщую коллективизацию…Как она проходила? Чем пришлось пожертвовать Сталину для достижения поставленных задач? Кто и как противился коллективизации? Чем отличался «белый» террор от «красного»? Впервые — не поверхностно-эмоциональная отповедь сталинскому режиму, а детальное исследование проблемы и анализ архивных источников.* * *Книга содержит много таблиц, для просмотра рекомендуется использовать читалки, поддерживающие отображение таблиц: CoolReader 2 и 3, ALReader.

Елена Анатольевна Прудникова

Публицистика / История / Образование и наука / Документальное
Революция 1917-го в России — как серия заговоров
Революция 1917-го в России — как серия заговоров

1917 год стал роковым для Российской империи. Левые радикалы (большевики) на практике реализовали идеи Маркса. «Белогвардейское подполье» попыталось отобрать власть у Временного правительства. Лондон, Париж и Нью-Йорк, используя различные средства из арсенала «тайной дипломатии», смогли принудить Петроград вести войну с Тройственным союзом на выгодных для них условиях. А ведь еще были мусульманский, польский, крестьянский и другие заговоры…Обо всем этом российские власти прекрасно знали, но почему-то бездействовали. А ведь это тоже могло быть заговором…Из-за того, что все заговоры наложились друг на друга, возник синергетический эффект, и Российская империя была обречена.Авторы книги распутали клубок заговоров и рассказали о том, чего не написано в учебниках истории.

Василий Жанович Цветков , Константин Анатольевич Черемных , Лаврентий Константинович Гурджиев , Сергей Геннадьевич Коростелев , Сергей Георгиевич Кара-Мурза

Публицистика / История / Образование и наука