Однако мы обязаны предупредить читателя вот о чём: в главе 12 мы встретимся с компактным двумерным многообразием (а именно бутылкой Клейна), не умещающимся в трёхмерном евклидовом пространстве. Чтобы склеить его из лоскутов, надо выйти из трёхмерного пространства в четырёхмерное. Трёхмерная сфера, являющаяся компактным многообразием, не помещается в трёхмерном пространстве. Чтобы склеить её из комков, также надо выйти в четырёхмерное пространство. А бывают и такие трёхмерные многообразия, для которых не хватает и четырёхмерного пространства, и они требуют для своего размещения пространства пятимерного (слава богу, для размещения трёхмерных многообразий не требуется привлечения пространств с числом измерений, бóльшим пяти). Все наши операции по склеиванию многообразий из обрывков, лоскутов, комков и т. д. были чисто мысленными, а тут, как видим, ещё прибавилась трудность, которая весьма и весьма напрягает мысль, – необходимость для некоторых многообразий выходить в пространства высоких измерений.
Гомеоморфизмы, гомеоморфия, топология
Слово «гомеоморфия» пугает непосвященного, но скрывающееся за ним понятие весьма естественно. Предварим разъяснения философическими комментариями. Не могу вспомнить, у кого я вычитал следующую мудрую сентенцию: наука начинается там, где устанавливаются понятия одинаковости и различия. Когда эти понятия установлены, то определяется и совокупность тех свойств, которые являются общими у одинаковых предметов. Именно изучение этих общих свойств, каковые естественно назвать
Проиллюстрируем сказанное примером из зоологии. В самом элементарном смысле каждая собака одинакова только сама с собой, но уже на следующей ступеньке абстракции одинаковы все таксы и все сенбернары. (Кинологи меня убьют, справедливо заявив, что таксы – это целая группа пород, а сенбернары бывают двух разновидностей – длинношёрстные и короткошёрстные, так что предложенная ступенька не является следующей.) Затем можно считать, что одинаковы все собаки, отличая их, однако, от волков и лисиц. Далее можно и собак, и волков, и лисиц признать одинаковыми, как представителей семейства псовых (они же собачьи, они же волчьи). И так вплоть до одинаковости всех живых организмов. Этот пример показывает, что чем более либерально представление об одинаковости, чем меньше объём тех свойств, которые должны совпасть у двух предметов для признания их одинаковыми, тем важнее и глубже становится само понятие одинаковости, ведь очевидно, что различие между собакой и камнем важнее и глубже различия между собакой и кошкой. Инварианты, присущие всем живым организмам, и составляют основной предмет изучения биологии.
Уже в школьной геометрии мы встречаемся с двумя видами одинаковости – конгруэнтностью фигур и их подобием. Как мы уже говорили, в школе конгруэнтные фигуры как бы не различают и потому называют их равными. Конгруэнтные фигуры имеют одинаковые размеры во всех своих деталях (т. е. изометричны). Подобие же, не требуя одинаковости размеров, означает одинаковость пропорций этих размеров; поэтому подобие отражает более сущностное сходство фигур, нежели конгруэнтность. (А изометрия занимает промежуточное, хотя и очень близкое к конгруэнтности, положение между конгруэнтностью и подобием.)
Гомеоморфия – это наиболее глубокая степень геометрической одинаковости. Сейчас мы попытаемся дать приблизительное объяснение этому понятию путём постепенного к нему приближения.
Геометрия в целом стоит на более высокой ступени абстракции, нежели физика, а физика – чем материаловедение. Возьмём, к примеру, шарик подшипника, бильярдный шар, крокетный шар и мяч. Физика не вникает в такие детали, как материал, из которого они сделаны, а интересуется лишь такими свойствами, как объём, вес, электропроводность и т. п. Для математики все они шары, различающиеся только размерами. Если шары имеют разные размеры, то они различаются для метрической геометрии, но одинаковы для геометрии подобия. Поэтому геометрия подобия более абстрактна, чем метрическая геометрия. С точки зрения геометрии подобия одинаковы и все шары, и все кубы, а вот шар и куб не одинаковы. Метрическая геометрия изучает те инварианты, те свойства, которые являются общими для всех конгруэнтных друг другу фигур, а геометрия подобия – те инварианты, которые являются общими для всех фигур друг другу подобных.
А теперь посмотрим на тор. Призываем благосклонного читателя осознать, что шар и куб «более одинаковы» между собой, чем каждый из них и тор. Наполнить это интуитивное осознание точным смыслом позволяет следующий мысленный эксперимент. Представим себе трёхмерную геометрическую фигуру (тело) сделанной из материала столь податливого, что его можно изгибать, растягивать, сжимать и вообще деформировать как угодно – нельзя только ни разрывать, ни склеивать. На рис. 15[90]
изображены три тела, шар и ещё два, каждое из которых можно преобразовать в любое другое деформацией указанного вида.