По сравнению с прежним, неформальным, определением понятия гомеоморфизма в терминах деформации предложенная дефиниция не только является более строгой, но и расширяет объём этого понятия. Нетрудно убедиться, например, что интервал гомеоморфен прямой, открытый круг – плоскости, а открытый шар – всему трёхмерному пространству. Чтобы охватить подобные случаи определением через деформации, пришлось бы допускать в качестве таковых бесконечные растяжения.
Осталось выполнить данное ранее обещание и определить понятие 'в любой близости'. Каждая геометрическая фигура расположена в евклидовом пространстве какой-то размерности, а там установлено евклидово расстояние (см. главу 10). Слова «нечто найдётся в любой близости от данной точки» означают, что это «нечто» найдётся на расстоянии (от данной точки), меньшем любого наперёд заданного положительного действительного числа. Более подробно: какое положительное действительное число ни задай, интересующее нас «нечто» найдётся на таком расстоянии от рассматриваемой точки, которое меньше заданного числа. Быть может, любезному читателю покажется более простым вот какое многоступенчатое разъяснение слов «в любой близости». Сперва вводится понятие открытого шара
произвольной размерности, частично знакомое нам по главе 10: открытый шар размерности n и радиуса r с центром в точке А состоит из всех точек n-мерного евклидова пространства, находящегося от А на расстоянии меньшем, нежели r. Затем для всякой точки геометрической фигуры вводится понятие окрестности этой точки: окрестностью точки называется пересечение множества всех точек фигуры с произвольным открытым шаром, центр которого находится в этой точке.Иными словами, окрестность точки есть множество всех таких точек рассматриваемой фигуры, которые одновременно принадлежат какому-либо открытому шару. Подразумевается, что в качестве размерности всех этих открытых шаров выступает размерность того евклидова пространства, в рамках которого рассматривается наша фигура. Таким образом, каждая точка фигуры имеет бесчисленное количество окрестностей – столько же, сколько существует открытых шаров с центром в данной точке. Наконец, сообщается, что «в любой близости от данной точки» означает 'в любой окрестности данной точки'.
Если все точки прикосновения какой-либо части геометрической фигуры принадлежат самóй рассматриваемой части, эта часть называется замкнутой
. Круг, например, является замкнутой частью плоскости. Его, как мы знаем, иногда называют замкнутым, чтобы отличить от открытого круга. Последний же замкнутой частью плоскости не является, поскольку среди его точек прикосновения имеются точки не принадлежащей ему окружности. Запрещению разрывов при гомеоморфизме можно теперь дать более сжатую формулировку: гомеоморфизм сохраняет свойство замкнутости. Это означает, что всякая замкнутая (незамкнутая) часть исходной фигуры обязана перейти в замкнутую же (незамкнутую) часть результирующей фигуры.Окончательно для понятия гомеоморфизма можно предложить следующее определение: гомеоморфизм есть взаимно однозначное преобразование, сохраняющее замкнутость
.Ещё о многообразиях
Понятие гомеоморфии позволяет предложить следующее определение n
-мерного многообразия: это такая геометрическая фигура, каждая точка которой имеет окрестность, гомеоморфную n-мерному шару. Данное определение имеет тот недостаток, что наши «геометрические фигуры» расположены в евклидовых пространствах, а многие важные многообразия возникают не как подмножества евклидовых пространств, а «сами по себе». Чтобы дать определение многообразия, свободное от этого недостатка, пришлось бы вводить общее понятие абстрактного топологического пространства. Мы не будем давать точного определения этого понятия, ограничившись следующим неформальным описанием: топологическое пространство есть некое обобщение понятия геометрической фигуры, для которого имеют смысл обсуждавшиеся выше понятия прикосновения, окрестности точки, замкнутого множества и гомеоморфизма. (Указанный недостаток не слишком страшен, поскольку каждое многообразие может быть «представлено» в виде геометрической фигуры. Это значит, что для каждого многообразия существует гомеоморфная ему геометрическая фигура. Так, любое трёхмерное многообразие гомеоморфно некоторой геометрической фигуре, расположенной в пятимерном евклидовом пространстве.)Приведем некоторые примеры многообразий, возникающих «абстрактно» в механике и геометрии.