Долгое время единственной мыслимой моделью геометрического строения Вселенной служило трёхмерное евклидово пространство, т. е. такое, которое известно всем и каждому со средней школы. Это пространство бесконечно; казалось, что никакие другие представления и невозможны; помыслить о конечности Вселенной казалось безумием (не меньшим, чем несколько тысяч лет назад мысль об обращении Земли вокруг Солнца). Однако ныне представление о конечности Вселенной не менее законно, чем представление о её бесконечности. В частности, конечна трёхмерная сфера. От общения с физиками у меня осталось впечатление, что одни отвечают: «Скорее всего, Вселенная бесконечна», другие же: «Скорее всего, Вселенная конечна», и только единицы не имеют определённой точки зрения.
Ниже мы попытаемся объяснить теоретическую возможность
Вот три мысленных эксперимента, способных засвидетельствовать конечность Вселенной, если она действительно имеет место. Первый: экспериментатор отправляется в космическое путешествие и, двигаясь всё время в одну сторону, возвращается в исходную точку. Второй: длина окружности оказывается меньше той, которую сообщают нам в школе, т. е. меньше 2π, помноженных на длину радиуса, причём отличие от «школьной» длины тем больше, чем длиннее радиус. Третий (предложен Эйнштейном): экспериментатор окружает себя сферой из прочной и неограниченно растягивающейся плёнки и начинает эту сферу раздувать; площадь поверхности сферы сперва будет возрастать, но начиная с некоторого момента начнет уменьшаться, а в итоге вся сфера стянется в точку. Этот третий эксперимент можно изложить и несколько иначе – в терминах намазывания краски на шар для игры в кегли, крокет или бильярд; можно взять и мяч. Предполагается, что краска имеется в неограниченном количестве. Экспериментатор покрывает шар всё новыми и новыми слоями краски, так что радиус шара неуклонно возрастает, поверхность же его уплощается, становясь всё менее и менее выпуклой. В какой-то момент экспериментатор замечает, что поверхность перестаёт быть выпуклой, она начинает прогибаться в другую сторону (так и хочется сказать «становится впуклой»). А ещё через некоторое время экспериментатор обнаруживает себя не вне той сферы, каковой является поверхность окрашиваемого шара, а внутри неё, т. е. внутри сферической полости. Он продолжает накладывать краску на «стены» полости до тех пор, пока эти сжимающиеся «стены» его не стискивают совершенно.
Чтобы понять, как такое возможно, надо напрячь воображение, а затем рассуждать по аналогии. С этой целью мы слегка изменим наше представление о Флатландии. В главе 10 Флатландия была плоской, теперь будет сферической. Желающие могут представить себе очень тонкий слой между двумя концентрическими двумерными сферами – столь тонкий, что его толщиной мы пренебрегаем, считая, что её нет вовсе. Таким образом, новая Флатландия двумерна, как и прежде; она населена двумерными существами, флатландцами. Мы с вами живём