Здесь существенна заключённая в скобки оговорка «в том виде, в каком мы понимаем пространство». Имеется в виду стандартное, школьное понимание пространства. Математики, однако, обнаружили теоретическую возможность существования такой формы трёхмерного пространства, что поменять местами правую и левую части тела можно и без выхода за его пределы. При стандартном, школьном понимании формы окружающего нас трёхмерного пространства действительно никаким перемещением в этом пространстве невозможно превратить кисть правой руки в кисть левой руки. Но это невозможно именно при стандартном, школьном понимании. Существуют, однако, иные формы пространства, допускающие такое перемещение. Попытаемся разъяснить, как такое может быть.
Как справедливо замечает Уэллс, вырезанный из бумаги силуэт правой ладони невозможно превратить в силуэт левой ладони, ограничиваясь перемещением по плоской поверхности стола; чтобы это сделать, надо поднять силуэт над столом, т. е. выйти в третье измерение, перевернуть силуэт и снова положить на стол.
Существуют, однако, такие поверхности, при перемещении по которым правое может превратиться в левое, а левое – в правое. Самой простой и самой известной из таких поверхностей является
При желании читатель может сам изготовить ленту Мёбиуса. Сделать это просто. Если взять бумажную или матерчатую ленту и склеить её торцы, то полученная поверхность будет боковой поверхностью цилиндра. Если же при этом ленту перекрутить, т. е., удерживая неподвижным один конец ленты, другой конец повернуть перед склеиванием на 180°, как раз и получится лента Мёбиуса. Сказанное иллюстрирует рис. 21. Если взять ленту с двумя длинными сторонами
Самое же замечательное, что лента Мёбиуса имеет всего лишь одну сторону. Муравей, ползущий по одной стороне вырезанного из плоскости круга, не может перейти на другую его сторону, не переползя через край. Тот же муравей, ползающий по внешней стороне сферы, не может попасть внутрь сферы, не прогрызя её насквозь; а если он ползёт по внутренней стороне сферы, то точно так же должен её прогрызть, чтобы вырваться наружу. И поверхность в виде круга, и поверхность в виде сферы имеют каждая по две стороны. Иное дело лента Мёбиуса. Пусть теперь наш муравей ползает по ней. Проделаем такой мысленный эксперимент. Сделаем клон муравья и пустим его ползти, оставив исходного, клонированного, муравья на месте. Мы обнаружим, что, следуя определённым маршрутом, клон достигнет того же места ленты, что и клонированный муравей, но только оба насекомых окажутся в положении антиподов по отношению друг к другу: каждый относительно другого будет обращен спиной вниз. Лист бумаги можно закрасить с одной стороны в чёрный цвет, оставив другую его сторону незакрашенной. Точно так же и боковую поверхность цилиндра, и сферу можно выкрасить с одной стороны, оставив другую незакрашенной. Поступить так с лентой Мёбиуса не удастся. И плоскость, и её кусок, и поверхность цилиндра, и сфера суть поверхности