Когда-то изучение простых чисел рассматривалось как чистая игра ума. Оказалось, однако, что простые числа (особенно большие, требующие для своей записи сотен десятичных знаков простые числа) могут быть чрезвычайно полезны для решении многих практических задач защиты информации, в том числе криптографии. Тайнопись существовала уже во времена античности, а возможно, и раньше. Что касается России, то мне довелось видеть факсимильное воспроизведение документа XVII в., в котором говорилось о необходимости изобрести такое письмо, которое только его царскому величеству, и никому другому, было бы ведомо. Мальчишеское воображение всегда увлекала романтика шифров. Вспомним культовый советский сериал «Семнадцать мгновений весны», эту сказку для детей зрелого возраста. Её главный герой – штандартенфюрер Макс Отто фон Штирлиц, под каковым именем скрывается доблестный разведчик (шпион, с германской точки зрения) полковник Максим Максимович Исаев. Пользуясь конспиративным псевдонимом Юстас, Исаев отправляет шифрованные донесения Алексу. Не исключено, что тем же шифром пользуются и другие агенты Алекса. Теперь вообразим себе такую ситуацию. Шифр вот-вот будет разгадан противником, и узнавший об этом Алекс должен срочно сообщить всем своим агентам новый способ шифровки сообщений. В довершение бед Алекс лишен возможности отправить агентам шифрограммы (например, код, которым он пользуется, уже раскрыт). Казалось бы, положение совершенно безнадёжное. Однако в конце 1970-х гг. была предложена технология так называемого
Среди нерешённых проблем, связанных с простыми числами, назовём две –
Проблема близнецов
Заметим, что встречаются очень близко расположенные друг к другу простые числа, а именно такие, расстояние между которыми равно 2. Пример: 41 и 43. Такие числа называются
Попробуем решить её тем же методом, каким была установлена бесконечность совокупности простых чисел в доказательстве Эйлера. В качестве последовательности (
1/3 + 1/5, 1/3 + 1/5 + 1/7, 1/3 + 1/5 + 1/7 + 1/11, 1/3 + 1/5 + 1/7 + 1/11 + 1/13, ….
Если бы удалось обнаружить, что совокупность всех таких сумм не является ограниченной сверху, то это означало бы, что ряд близнецовых пар никогда не закончится, и проблема близнецов была бы решена. Такая надежда теплилась до 1919 г., когда норвежский математик Вигго Брун (Viggo Brun) доказал, что совокупность этих сумм ограничена сверху[36]
. «И прекрасно, – скажет иной читатель, – это также означает решение проблемы близнецов, но только с противоположным результатом: совокупность близнецов конечна». Однако такой вывод неправилен, что показывает следующий простой пример. Последовательность сумм1/2 + 1/4, 1/2 + 1/4 + 1/8, 1/2 + 1/4 + 1/8 + 1/16, 1/2 + 1/4 + 1/8 + 1/16 + 1/32, ….
ограничена сверху (наименьший ограничитель – число 1), но ряд степеней двойки (2, 4, 8, 16, 32 и т. д.) – бесконечен.
Итан Чжан и его открытие