Читаем Апология математики (сборник статей) полностью

И ещё об одном виде чисел – так называемых алгебраических числах. Действительное число называется алгебраическим, если оно является корнем какого-либо алгебраического уравнения. Всякое уравнение имеет две части, левую и правую, разделённые (или, если угодно, соединённые) знаком равенства. Алгебраическими называют уравнения особо простого вида: в правой части стоит число 0, а левая есть многочлен какой-то степени с одним неизвестным и целыми коэффициентами, которые могут быть как положительными, так и отрицательными. Частный вид алгебраических уравнений образуют те квадратные уравнения, у которых все коэффициенты (коэффициент при x², коэффициент при x, свободный член) суть целые числа. Всякое рациональное число есть число алгебраическое (вопрос к читателю: почему?), и алгебраические числа образуют как бы следующий за рациональными разряд чисел по шкале «от простого к сложному». Математиков долгое время интересовал вопрос, могут ли действительные числа не являться алгебраическими; такие числа называют трансцендентными. Существование трансцендентных чисел было установлено в 1844 г. путём приведения соответствующих достаточно сложных примеров; лишь в 1873 г. была доказана трансцендентность известного числа e и только в 1882-м – ещё более известного числа π. Однако, если не требовать указания конкретных примеров трансцендентных чисел, само существование таковых может быть установлено тем же методом, каким было установлено существование чисел иррациональных. А именно: в 1874 г. Кантор показал, что множество всех алгебраических уравнений счётно, из чего уже несложно вывести счётность множества алгебраических чисел. А мы знаем, что множество всех действительных чисел континуально, так что оно никак не может состоять из одних только алгебраических чисел.

Понятие эквивалентности служит основой для понятия количества элементов множества. Количество – это то общее, что имеется у всех эквивалентных друг другу множеств. Для каждого класса эквивалентных друг другу множеств это количество своё – одно и то же для всех множеств этого класса. Возьмём, например, множество чудес света, множество дней недели, множество нот гаммы, множество смертных грехов и множество цветов спектра (и радуги), зашифрованных во фразе «Каждый охотник желает знать, где сидит фазан». Все они эквивалентны. Просвещённый читатель добавит к ним множество городов, споривших за честь быть родиной Гомера, и множество земных душ «по», присутствующих, согласно верованиям китайцев, в каждом человеке. И множество столбов того дома мудрости, о котором говорится в Притчах Соломона. И множества печатей, рогов, очей и духов из пятой главы Апокалипсиса. А также множества ангелов и труб из его восьмой главы. И множество ворот древнегреческих Фив, и множество вождей похода аргивян на те же Фивы. И множество римских холмов. И множество тех нянек, у которых дитя без глаза. И множество невест ефрейтора Збруева[53]. И множество пядей во лбу. Если теперь рассмотреть наряду с перечисленными только что множествами и все мыслимые множества, эквивалентные перечисленным, мы обнаружим, что в них присутствует нечто общее. Это общее есть количество элементов в каждом из них. В данном конкретном случае количество называется, как всем известно, семь. А количество элементов, характерное для множества планет Солнечной системы и всех эквивалентных ему множеств, теперь (после разжалования Плутона) называется восемь.

Надеемся, читатель уже пришёл к выводу, что все счётные множества обладают одним и тем же количеством элементов. В частности, количество всех квадратов равно количеству всех натуральных чисел. Количество элементов какого-либо счётного множества (а у всех счётных множеств количество элементов одно и то же!) называется счётной мощностью и обозначается буквой áлеф с нижним индексом ноль (произносится áлеф-ноль) –  Вот и соответствующая цитата из одноимённого рассказа Борхеса (кстати, с довольно отчётливой формулировкой эффекта Кортасара): «В Mengenlehre Алеф – символ трансфинитных множеств, где целое не больше, чем какая-либо из частей».

Перейти на страницу:

Похожие книги

1993. Расстрел «Белого дома»
1993. Расстрел «Белого дома»

Исполнилось 15 лет одной из самых страшных трагедий в новейшей истории России. 15 лет назад был расстрелян «Белый дом»…За минувшие годы о кровавом октябре 1993-го написаны целые библиотеки. Жаркие споры об истоках и причинах трагедии не стихают до сих пор. До сих пор сводят счеты люди, стоявшие по разные стороны баррикад, — те, кто защищал «Белый дом», и те, кто его расстреливал. Вспоминают, проклинают, оправдываются, лукавят, говорят об одном, намеренно умалчивают о другом… В этой разноголосице взаимоисключающих оценок и мнений тонут главные вопросы: на чьей стороне была тогда правда? кто поставил Россию на грань новой гражданской войны? считать ли октябрьские события «коммуно-фашистским мятежом», стихийным народным восстанием или заранее спланированной провокацией? можно ли было избежать кровопролития?Эта книга — ПЕРВОЕ ИСТОРИЧЕСКОЕ ИССЛЕДОВАНИЕ трагедии 1993 года. Изучив все доступные материалы, перепроверив показания участников и очевидцев, автор не только подробно, по часам и минутам, восстанавливает ход событий, но и дает глубокий анализ причин трагедии, вскрывает тайные пружины роковых решений и приходит к сенсационным выводам…

Александр Владимирович Островский

Публицистика / История / Образование и наука
Сталин. Битва за хлеб
Сталин. Битва за хлеб

Елена Прудникова представляет вторую часть книги «Технология невозможного» — «Сталин. Битва за хлеб». По оценке автора, это самая сложная из когда-либо написанных ею книг.Россия входила в XX век отсталой аграрной страной, сельское хозяйство которой застыло на уровне феодализма. Три четверти населения Российской империи проживало в деревнях, из них большая часть даже впроголодь не могла прокормить себя. Предпринятая в начале века попытка аграрной реформы уперлась в необходимость заплатить страшную цену за прогресс — речь шла о десятках миллионов жизней. Но крестьяне не желали умирать.Пришедшие к власти большевики пытались поддержать аграрный сектор, но это было технически невозможно. Советская Россия катилась к полному экономическому коллапсу. И тогда правительство в очередной раз совершило невозможное, объявив всеобщую коллективизацию…Как она проходила? Чем пришлось пожертвовать Сталину для достижения поставленных задач? Кто и как противился коллективизации? Чем отличался «белый» террор от «красного»? Впервые — не поверхностно-эмоциональная отповедь сталинскому режиму, а детальное исследование проблемы и анализ архивных источников.* * *Книга содержит много таблиц, для просмотра рекомендуется использовать читалки, поддерживающие отображение таблиц: CoolReader 2 и 3, ALReader.

Елена Анатольевна Прудникова

Публицистика / История / Образование и наука / Документальное
Революция 1917-го в России — как серия заговоров
Революция 1917-го в России — как серия заговоров

1917 год стал роковым для Российской империи. Левые радикалы (большевики) на практике реализовали идеи Маркса. «Белогвардейское подполье» попыталось отобрать власть у Временного правительства. Лондон, Париж и Нью-Йорк, используя различные средства из арсенала «тайной дипломатии», смогли принудить Петроград вести войну с Тройственным союзом на выгодных для них условиях. А ведь еще были мусульманский, польский, крестьянский и другие заговоры…Обо всем этом российские власти прекрасно знали, но почему-то бездействовали. А ведь это тоже могло быть заговором…Из-за того, что все заговоры наложились друг на друга, возник синергетический эффект, и Российская империя была обречена.Авторы книги распутали клубок заговоров и рассказали о том, чего не написано в учебниках истории.

Василий Жанович Цветков , Константин Анатольевич Черемных , Лаврентий Константинович Гурджиев , Сергей Геннадьевич Коростелев , Сергей Георгиевич Кара-Мурза

Публицистика / История / Образование и наука