И ещё об одном виде чисел – так называемых алгебраических числах
. Действительное число называется алгебраическим, если оно является корнем какого-либо алгебраического уравнения. Всякое уравнение имеет две части, левую и правую, разделённые (или, если угодно, соединённые) знаком равенства. Алгебраическими называют уравнения особо простого вида: в правой части стоит число 0, а левая есть многочлен какой-то степени с одним неизвестным и целыми коэффициентами, которые могут быть как положительными, так и отрицательными. Частный вид алгебраических уравнений образуют те квадратные уравнения, у которых все коэффициенты (коэффициент при x², коэффициент при x, свободный член) суть целые числа. Всякое рациональное число есть число алгебраическое (вопрос к читателю: почему?), и алгебраические числа образуют как бы следующий за рациональными разряд чисел по шкале «от простого к сложному». Математиков долгое время интересовал вопрос, могут ли действительные числа не являться алгебраическими; такие числа называют трансцендентными. Существование трансцендентных чисел было установлено в 1844 г. путём приведения соответствующих достаточно сложных примеров; лишь в 1873 г. была доказана трансцендентность известного числа e и только в 1882-м – ещё более известного числа π. Однако, если не требовать указания конкретных примеров трансцендентных чисел, само существование таковых может быть установлено тем же методом, каким было установлено существование чисел иррациональных. А именно: в 1874 г. Кантор показал, что множество всех алгебраических уравнений счётно, из чего уже несложно вывести счётность множества алгебраических чисел. А мы знаем, что множество всех действительных чисел континуально, так что оно никак не может состоять из одних только алгебраических чисел.Понятие эквивалентности служит основой для понятия количества элементов множества. Количество – это то общее, что имеется у всех эквивалентных друг другу множеств. Для каждого класса эквивалентных друг другу множеств это количество своё – одно и то же для всех множеств этого класса. Возьмём, например, множество чудес света, множество дней недели, множество нот гаммы, множество смертных грехов и множество цветов спектра (и радуги), зашифрованных во фразе «Каждый охотник желает знать, где сидит фазан». Все они эквивалентны. Просвещённый читатель добавит к ним множество городов, споривших за честь быть родиной Гомера, и множество земных душ «по», присутствующих, согласно верованиям китайцев, в каждом человеке. И множество столбов того дома мудрости, о котором говорится в Притчах Соломона. И множества печатей, рогов, очей и духов из пятой главы Апокалипсиса. А также множества ангелов и труб из его восьмой главы. И множество ворот древнегреческих Фив, и множество вождей похода аргивян на те же Фивы. И множество римских холмов. И множество тех нянек, у которых дитя без глаза. И множество невест ефрейтора Збруева[53]
. И множество пядей во лбу. Если теперь рассмотреть наряду с перечисленными только что множествами и все мыслимые множества, эквивалентные перечисленным, мы обнаружим, что в них присутствует нечто общее. Это общее есть количество элементов в каждом из них. В данном конкретном случае количество называется, как всем известно, семь. А количество элементов, характерное для множества планет Солнечной системы и всех эквивалентных ему множеств, теперь (после разжалования Плутона) называется восемь.Надеемся, читатель уже пришёл к выводу, что все счётные множества обладают одним и тем же количеством элементов. В частности, количество всех квадратов равно количеству всех натуральных чисел. Количество элементов какого-либо счётного множества (а у всех счётных множеств количество элементов одно и то же!) называется счётной мощностью
и обозначается буквой áлеф с нижним индексом ноль (произносится áлеф-ноль) – Вот и соответствующая цитата из одноимённого рассказа Борхеса (кстати, с довольно отчётливой формулировкой эффекта Кортасара): «В Mengenlehre Алеф – символ трансфинитных множеств, где целое не больше, чем какая-либо из частей».