До сих пор мы применяли к множествам термин
Описанный выше способ, посредством которого существование иррациональных и трансцендентных чисел можно вывести из общих соображений, без предъявления конкретных примеров, мы вправе назвать количественным, ибо он основан на несовпадении количеств – счётного количества, присущего как множеству рациональных, так и множеству алгебраических чисел, и континуального количества, присущего множеству всех действительных чисел.
Теперь о сравнении количеств. Два количества могут быть равны или не равны. Давайте осознаем, чтó это означает. Каждое количество представлено классом всех мыслимых эквивалентных друг другу множеств. Равенство количеств означает совпадение соответствующих классов, а неравенство – их несовпадение. Семь потому не равно восьми, что класс всех множеств, эквивалентных множеству смертных грехов, не совпадает с классом всех множеств, эквивалентных множеству планет. Количество квадратов потому равно количеству натуральных чисел, что класс всех множеств, эквивалентных множеству квадратов, совпадает с классом всех множеств, эквивалентных натуральному ряду. Но хотелось бы иметь право говорить не только о равенстве или неравенстве двух количеств, но и о том, какое из них больше, а какое меньше. (Не запутайтесь: слова «больше» и «меньше» относятся к количествам, а не к представляющим их классам множеств!)
Спросим уже знакомых нам, не умеющих считать первобытных скотоводов, могут ли они определить, в каком из их стад больше элементов (в предположении, что стада различны по численности). Их ответ будет положительным. Если в стаде коз удастся выделить такую часть, не совпадающую со всем стадом, которая окажется эквивалентной множеству овец, то коз больше. Если же в стаде овец удастся выделить такую часть, не совпадающую со всем стадом, которая окажется эквивалентной множеству коз, то больше овец. (В математике каждое множество считается частью самого себя, поэтому оговорка о несовпадении существенна.) Однако, как мы видели, такой способ не годится в случае бесконечных множеств. Действительно, в натуральном ряду можно выделить часть, с ним не совпадающую (а именно: множество квадратов), которая эквивалентна множеству квадратов; тем не менее натуральный ряд и множество квадратов, как мы видели, эквивалентны. Что же делать? Надо придумать такой критерий, который применим к любым множествам. Гениальное решение, найденное Кантором, состоит в следующем: к предложенной нашими скотоводами формулировке надо всего лишь добавить некую клаузулу, излишнюю (хотя и ничему не мешающую) в конечном случае, но необходимую в случае бесконечном. Клаузула состоит в требовании неэквивалентности сравниваемых множеств. Полная формулировка того, что количество элементов первого множества больше количества элементов второго множества, такова: множества неэквивалентны, но в первом множестве имеется часть, эквивалентная второму множеству.