Читаем Физика пространства - времени полностью

— относительный сдвиг, намного меньший, чем в случае свободного атома железа! [ср. часть а)].

в) Воспользовавшись результатами упражнения 72, найдём частоту:


𝐸₁

обычн

=

(14,4⋅10³

эв

)

(1,6⋅10⁻¹⁹

дж

/

эв

)

=


=

23⋅10⁻¹⁶

дж

=

ℎν₀


или


ν₀

=

23⋅10⁻¹⁶ дж

6,6⋅10⁻³⁴ дж/сек

=

3,5⋅10¹⁸

гц

.


Ширина линии Δν в герцах равна


Δ

ν

=

Δν

ν₀

ν₀

=

3⋅10⁻¹³⋅3,5⋅10¹⁸

гц

=

10⁶

гц

.


Относительная ширина спектральной линии, равная 3⋅10⁻¹³, намного меньше, чем относительный сдвиг, обусловленный отдачей свободного атома [т.е. 10⁻⁷ — результат, полученный в части а)], и вместе с тем намного больше, чем относительный сдвиг в процессе без отдачи [2⋅10⁻²⁹ для однограммового образца; см. часть б)]. ▲

86. Резонансное рассеяние

Фотон выполняет двоякую роль. Во-первых, он возбуждает атом, прежде находившийся в состоянии с основной энергией (массой) 𝑚, переводя его в состояние с 𝑚. Для этого он должен столкнуться с атомом и поглотиться им, а значит, передать ему нежелательный толчок. Следовательно, и это во-вторых, фотон передаёт атому также кинетическую энергию отдачи. Если у фотона запас энергии будет достаточен лишь для выполнения первой роли, то он никак не сможет выполнить ни её, ни вторую роль. Если, однако, атом обладает очень большой массой, то при отдаче он приобретёт весьма малую скорость и потеря энергии на отдачу будет мала. Тогда энергия фотона может быть очень близкой к разности 𝑚-𝑚. Кинетическую энергию, переданную атому, в случае таких малых скоростей можно рассчитывать с помощью законов ньютоновской механики:


𝑇

(Импульс)²

2⋅(Масса)

(𝑚-𝑚)²

𝑚

.


Отсюда можно заключить, что относительная поправка для энергии отдачи приближённо выражается как


Энергия отдачи

Энергия возбуждения

=

𝑇

𝑚-𝑚

𝑚-𝑚

𝑚

.


В случае свободного атома железа 𝙵𝚎⁵⁷ это отношение равно


14,4 кэв

2⋅57⋅931 000 кэв

=

1,4⋅10⁻⁷


т.е. оно слишком велико, чтобы его «не заметил» атом железа. Атом (точнее, его ядро) требует, чтобы энергия падающего фотона выдерживалась с относительной точностью около 3⋅10⁻¹³, иначе этот фотон не будет поглощён. Если же атом принадлежит кристаллу и речь идёт о «поглощении без отдачи», то отдачу приобретает масса кристалла, равная целому грамму, а это 10²² атомов. Увеличение знаменателя дроби в 10²² раз приводит к тому, что вместо прежней относительной поправки на энергию отдачи, равной 1,4⋅10⁻⁷, мы получаем 1,4⋅10⁻²⁹, за которой никакой атом железа не «уследит», и фотон будет поэтому поглощён. ▲

87. Измерение допплеровского смещения по резонансному рассеянию

Возьмём первую формулу из упражнения 76


𝐸

=

𝐸

'

ch

θ

𝑟

(1+β

𝑟

 cos

φ')


(источник в системе отсчёта ракеты, поглощающий атом — в лабораторной системе отсчёта). Положим здесь φ'=0 и 𝐸 '=𝐸₀ и запишем результат приближённо для малых скоростей β𝑟:


𝐸

=

𝐸₀


1+β𝑟

1-β𝑟


𝐸₀

1

+

β𝑟

2



1

+

β𝑟

2



𝐸₀

(1+β

𝑟

)


или


𝐸-𝐸₀

𝐸₀

Δ𝐸

𝐸₀

β

𝑟

.


Относительный допплеровский сдвиг частоты, равный 3⋅10⁻¹³, получается, когда скорость также составляет 3⋅10⁻¹³ скорости света, т.е.


𝑣

𝑟

=

3⋅10⁻¹³⋅3⋅10⁸

м

/

сек

10⁻⁴

м

/

сек

=

10⁻²

см

/

сек

.


Число зарегистрированных счётчиком гамма-квантов при этом увеличится, так как поглотитель беспрепятственно пропустит сквозь себя больше падающих на него фотонов, не подвергнув их резонансному рассеянию. Когда источник фотонов удаляется от поглотителя, относительный сдвиг частоты будет отличаться от случая приближения источника лишь знаком, что соответствует изменению знака β𝑟. В целом поведение счётчика изображено на рис. 154.

Рис. 154.

88. Проверка эффекта гравитационного красного смещения с помощью эффекта Мёссбауэра

Рис. 155.

Возьмём формулу, полученную в части в) упражнения 73,


Δ𝐸

𝐸₀

=

Δν

ν₀

=-

𝑔*𝑧

,


где 𝑔*=𝑔/𝑐²=(9,8 м/сек²)/(3⋅10⁸ м/сек)²≈1,1⋅10⁻¹⁶ м/м² для точек на поверхности Земли. Если 𝑧=22,5 м, получим


Δν

ν

≈-

(22,5

м

)(1,1⋅10⁻¹⁶

м

⁻¹)

≈-

2,5⋅10⁻¹⁵

.


Необходимо, чтобы резонансный поглотитель приближался к источнику гамма-квантов; тогда в системе отсчёта поглотителя благодаря эффекту Допплера будет компенсировано гравитационное красное смещение, наблюдаемое в лабораторной системе отсчёта. Вспомним, что в предыдущем упражнении относительная скорость β𝑟, нужная для оптимального поглощения, была найдена равной относительному сдвигу частоты излучения, которое требуется поглотить. Значит, скорость движения поглотителя должна быть равна


β

𝑟

=

2,5⋅10⁻¹⁵


или


𝑣

𝑟

10⁻⁶

м

/

сек

=

10⁻⁴

см

/

сек

 (см. рис. 155).


Результаты эксперимента Паунда и Ребки, приведённые на стр. 209, получены путём сравнения двух опытных фактов:

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное
Эволюция физики
Эволюция физики

Книга Альберта Эйнштейна и Леопольда Инфельда знакомит читателя с развитием основных идей физики. В книге даётся «представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями», в ней показано, как каждая последующая, уточнённая картина мира закономерно сменяет предыдущую. Книга отражает известную среди специалистов эйнштейновскую оценку задач современной физики и её основных тенденций развития, которые в конечном счёте ведут к созданию единой физической теории. Мастерское изложение делает книгу А. Эйнштейна и Л. Инфельда доступной и для неспециалистов. Книга переведена на многие языки мира, неоднократно переиздавалась и переиздаётся в различных странах.

Альберт Эйнштейн , Леопольд Инфельд

Физика / Образование и наука