Читаем Физика пространства - времени полностью

1) результатов измерений сдвига частоты, когда источник находился внизу, а поглотитель — вверху, как и описано в этом упражнении (уменьшение энергии поднимающегося фотона), и 2) результатов измерений этого сдвига, когда источник находился вверху, а поглотитель — внизу (увеличение частоты опускающегося фотона). Следовало ожидать, что относительный сдвиг частоты в обоих случаях должен быть одинаковым, но разного знака; поэтому при вычитании одного результата из другого должен получаться «сдвиг», вдвое больший, чем просто при движении фотона вверх (Паунд и Ребка назвали такой сдвиг «сдвигом в два конца»). Половинное значение численных результатов, полученных Паундом и Ребкой, хорошо согласуется с результатами проведённых нами здесь вычислений. ▲

89. Проверка парадокса часов с помощью эффекта Мёссбауэра

При малых β коэффициент, характеризующий относительное различие в старении атомов-близнецов, можно приближённо представить, пользуясь первыми членами разложения бинома Ньютона:


1

-

1-β²

1

-

1

-

1

2

β²

=

1

2

β²


Число тик-так за 1 сек приблизительно равно ν₀⋅( сек); поэтому накопление нехватки этих тик-так за одну секунду составит около


ν₀


β²

2



ср

(1

сек

)

,


а относительная нехватка будет равна (β²/₂)ср. Произвести оценку этой величины можно исходя из элементарной кинетической теории теплоты, затронутой в обсуждении (см. текст упражнения). Мы получим


Δν

ν₀

=


β²

2



ср

=

³/₂⋅𝑘𝑇

𝑚𝙵𝚎𝑐²

=


=

³/₂⋅1,38⋅10⁻²³ дж/град

57⋅(1,6⋅10⁻²⁷ кг)(9⋅10¹⁶ м²/сек²

𝑇

=

2,5⋅10⁻¹⁵ 𝑇

,


т.е. 2,5⋅10⁻¹⁵ на градус. Этот результат хорошо согласуется (конечно, как оценочный) с экспериментальными данными Паунда и Ребки. ▲

90. Симметричное упругое столкновение

Обозначим через 𝑇 и 𝑝 соответственно кинетическую энергию и импульс налетающей частицы, а через 𝑇 и 𝑝 — кинетическую энергию и абсолютную величину импульса каждой из рассеянных частиц. Тогда для рассматриваемого случая упругого рассеяния законы сохранения будут выражаться уравнениями


𝑇

+

𝑚

+

𝑚

=

2

𝑇

+

2𝑚


или


𝑇

=

2

𝑇


и


𝑝

=

2

𝑝


cos

α

2

.


Выражая импульс через кинетическую энергию, получим


𝑝

=

𝐸²-𝑚²

=

(𝑇+𝑚)²-𝑚²

=

𝑇²+2𝑚𝑇

.


Используя в уравнении сохранения импульса это выражение и равенство 𝑇=𝑇/2, найдём


𝑇²+2𝑚𝑇

=

2



𝑇

2


⎞²

+

2𝑚


𝑇

2



⎤½

cos

α

2

.


Возведём этот результат в квадрат и найдём cos ½α:


cos²

α

2

=

𝑇+2𝑚

𝑇+4𝑚

.


Это и требовалось получить. Формула (124) непосредственно следует отсюда ввиду указанного в условии упражнения тригонометрического тождества. Если упругое столкновение рассматривать в ньютоновском приближении, то кинетическую энергию 𝑇 налетающей частицы следует считать много меньшей, чем массу покоя любой из частиц. Тогда из нашего уравнения следует cos α=0 и α=90°, т.е. вывод механики Ньютона. В ультрарелятивистском случае кинетическая энергия 𝑇 намного превышает массу покоя 𝑚, и поэтому можно пренебречь членом 4𝑚 по сравнению с 𝑇 в знаменателе правой части формулы (124). Тогда cos α=1 и α=0 — обе частицы летят после столкновения вперёд. Сравните этот вывод с результатом, полученным в упражнении 68, где показано, что одиночный фотон (самая релятивистская из всех частиц!) может спонтанно распадаться на два фотона, лишь если эти последние движутся в том же направлении, что исходный фотон. ▲

91. Давид и Голиаф — подробный пример

Решение дано в тексте.

92. Абсолютно неупругое столкновение

Решение этого упражнения проведено в гл. 2 на стр. 161 и 162, причём ответ записан в виде уравнения (92). Величина 𝑚конечн=𝑚=𝑚₁+𝑚₂, так как кинетическая энергия налетающей частицы 𝑇 намного меньше, чем масса покоя любой из частиц. При этом условии ещё допустим ньютоновский подход к данной задаче с его «принципом сохранения масс». ▲


93. Порождение частиц протонами

а) Система частиц, изображённая на рис. 119, обладала импульсом до столкновения, но после этого её импульс равен нулю. Поэтому такая реакция не могла бы удовлетворять закону сохранения импульса, а значит, она невозможна.

б) Рассмотрим кадр «после» на рис. 120. Взяв вместо разлетающихся четырёх частиц конечного состояния такие же покоящиеся частицы, можно «сэкономить» избыточную кинетическую энергию и уменьшить на эту величину энергию, которая была первоначально придана двум сталкивающимся протонам (кадр «до», на рис. 120). Кинетическая энергия сталкивающихся частиц целиком переходит в массу покоя, лишь если все частицы конечного состояния покоятся.

в) Пусть 𝐸=𝑇+𝑚 — энергия и 𝑝 — импульс налетающего протона (рис. 121), 𝐸=𝑇+𝑚 — соответственно энергия и импульс каждой частицы после реакции. Законы сохранения имеют вид:


𝑇

+

𝑚

+

𝑚

=

4(

𝑇

+𝑚)


или


𝑇

=

1

4

𝑇

-

1

2

𝑚


и


𝑝

=

4

𝑝


или


𝑇²

+

2𝑚𝑇

⎞½

=

4

𝑇

²

+

2𝑚

𝑇

⎞½

.


Исключая из последнего уравнения 𝑇 и решая его затем относительно 𝑇, получим


𝑇

=

6𝑚

.


Это и есть пороговая энергия порождения протон-антипротонной пары. Так как масса покоя протона 𝑚 составляет 1 Бэв=10⁹ эв, то


𝑇

порог

=

6

Бэв

.


г) Из формулы в части в)


𝑇

=

1

4

𝑇

-

1

2

𝑚


находим, полагая 𝑇=6𝑚, что 𝑇=𝑚.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное
Эволюция физики
Эволюция физики

Книга Альберта Эйнштейна и Леопольда Инфельда знакомит читателя с развитием основных идей физики. В книге даётся «представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями», в ней показано, как каждая последующая, уточнённая картина мира закономерно сменяет предыдущую. Книга отражает известную среди специалистов эйнштейновскую оценку задач современной физики и её основных тенденций развития, которые в конечном счёте ведут к созданию единой физической теории. Мастерское изложение делает книгу А. Эйнштейна и Л. Инфельда доступной и для неспециалистов. Книга переведена на многие языки мира, неоднократно переиздавалась и переиздаётся в различных странах.

Альберт Эйнштейн , Леопольд Инфельд

Физика / Образование и наука