Читаем Физика пространства - времени полностью

Этим расчётом завершается решение поставленной задачи (найти координаты мировой точки распада π-мезона относительно мировой точки его рождения в лабораторной системе координат).

Задача о π-мезоне служила введением к общей задаче — найти координаты данного события в лабораторной системе, если заданы его координаты в системе ракеты. Если мы покажем, что эта задача равнозначна выводу формул преобразования Лоренца, значит, мы пришли к методу вывода этого преобразования, исходя из простейших предположений. На самом деле, мы уже нашли два коэффициента из четырёх в формулах преобразования Лоренца:


𝑡

=

β

𝑟

𝑡

=

𝑡'

√1-β𝑟²

+

𝐴𝑥'

,


𝑥

=

β

𝑟

𝑡

=

β𝑟𝑡'

√1-β𝑟²

+

𝐵𝑥'

.


Что касается остальных двух коэффициентов, временно обозначенных через 𝐴 и 𝐵, то о них мы ничего не узнали просто потому, что π-мезон всё время покоился в точке 𝑥'=0 в системе ракеты. Благодаря этому коэффициенты 𝐴 и 𝐵 могли иметь любые конечные значения при одном и том же решении

Конечный этап вывода преобразования Лоренца

задачи о мезоне. Чтобы найти значения этих коэффициентов, мы перейдём от специального случая (события — распада 𝐸) к более общему случаю — событию, происходящему в точке с произвольными координатами 𝑥' и 𝑡'. Мы вновь потребуем, чтобы величина интервала была одинаковой в лабораторной системе и в системе отсчёта ракеты. Другими словами, потребуем выполнения равенства


𝑡²-𝑥²

=

𝑡'²-𝑥'²

,


или



𝑡'

√1-β𝑟²

+

𝐴𝑥'

⎤²

-


β𝑟𝑡'

√1-β𝑟²

+

𝐵𝑥'

⎤²

=

𝑡'²-𝑥'²

,


или


𝑡'²

+

2(𝐴-β𝑟𝐵)𝑥'𝑡'

√1-β𝑟²

+

(𝐴²-𝐵²)

𝑥'²

=

𝑡'²

-

𝑥'²

.


(18)


Это равенство не может выполняться для всевозможных 𝑡' и 𝑥', если только коэффициенты 𝐴 и 𝐵 не выбраны вполне определённым образом. Во-первых, эти коэффициенты должны быть такими, чтобы в левой части равенства (18) обратился в нуль множитель при 𝑥'𝑡' (так как в правой части подобного члена нет). Тогда


𝐴

=

β

𝑟

𝐵

.


Во-вторых, множители при (-𝑥'²) в левой и правой частях равенства (18) должны совпадать. Поэтому


𝐵²

-

𝐴²

=

1.


Мы получили два уравнения для двух неизвестных 𝐴 и 𝐵; решая их, найдём


𝐴

=

β𝑟

√1-β𝑟²


и


𝐵

=

1

√1-β𝑟²


Этим вычислением и завершается вывод формул преобразования Лоренца (16).

Роль преобразования Лоренца

Новый — ковариантный — подход имеет дело с компонентами пространственно-временного интервала — координатами 𝑥, 𝑡 (16), а не с величиной самого интервала (15). Язык интервалов подобен универсальному языку: любой интервал одинаков для наблюдателей во всех системах отсчёта. Напротив, компоненты взаимного удаления событий в пространстве-времени, измеренные в одной системе отсчёта,— это весьма частный язык для выражения такого удаления. По своей форме этот язык похож на тот частный язык, с помощью которого та же удалённость описывается в другой системе отсчёта. Ведь в обоих языках фигурируют «пространственные» и «временная компоненты». Но само по себе это обстоятельство ещё ничего не даёт для сравнения информации, которой располагают разные группы наблюдателей. Когда англичанин берёт турецкую газету, ему не легче от знания того, что в турецком языке, как и в английском, есть глаголы и существительные! Ему нужен ещё и словарь. Так вот для перевода на свой язык информации о пространственных и временных координатах событий из других систем отсчёта наблюдателю тоже требуется словарь. Этот словарь — формулы преобразования Лоренца (16).

Аналогия: землемеры пользуются преобразованием эвклидова пространства

Подобный же словарь необходим и при гораздо более обычных обстоятельствах. Дневной землемер, определяющий север по магнитному компасу, может перевести на свой язык измерения северной и восточной координат, сделанные ночным землемером, ориентирующимся по Полярной звезде. Но не потребуется никакого словаря, если они будут сравнивать свои результаты, выраженные на универсальном языке расстояний. Бросается в глаза различие между двумя методами — исходящим из инвариантов (расстояния — универсальный язык) и использующим компоненты (северную и восточную координаты, величины которых, определённые разными наблюдателями, различны). Эту противоположность инвариантных и ковариантных величин иллюстрирует рис. 26.

Рис. 26. Ковариантный подход к геометрии использует компоненты величин, например компоненты вектора 𝑂𝐴. (Напротив, в инвариантном подходе используются длины, например длина 𝑂𝐴. Такие длины имеют численные значения, не зависящие от выбора системы отсчёта. Иначе говоря, любая длина одинакова независимо от того, кто её определяет — землемер, определяющий направление на север по Полярной звезде, или землемер, пользующийся магнитным компасом).

Пусть в одной системе значения компонент равны (𝑥,𝑦)=(7,6), а в другой системе — (𝑥',𝑦')=(2,9). (Эти числа соответствуют нашему чертежу). Очевидно, что значения компонент в двух системах отсчёта различны. В самом деле, они связаны законом «ковариантного преобразования» 𝑥 =

4

5 𝑥' +

3

5 𝑦' ,  𝑦 =-

3

5 𝑥' +

4

5 𝑦' ,

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное
Эволюция физики
Эволюция физики

Книга Альберта Эйнштейна и Леопольда Инфельда знакомит читателя с развитием основных идей физики. В книге даётся «представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями», в ней показано, как каждая последующая, уточнённая картина мира закономерно сменяет предыдущую. Книга отражает известную среди специалистов эйнштейновскую оценку задач современной физики и её основных тенденций развития, которые в конечном счёте ведут к созданию единой физической теории. Мастерское изложение делает книгу А. Эйнштейна и Л. Инфельда доступной и для неспециалистов. Книга переведена на многие языки мира, неоднократно переиздавалась и переиздаётся в различных странах.

Альберт Эйнштейн , Леопольд Инфельд

Физика / Образование и наука