Читаем Физика пространства - времени полностью

Относительно лаборатории ракета движется со скоростью β𝑟. Чему равна скорость β пули относительно лаборатории, измеренная по решётке часов лабораторной системы отсчёта? Ответ: эта скорость равна


β

=


Число метров,

пройденных в

направлении оси 𝑥

за каждый



Метр времени 𝑡,

прошедший

по часам

в лаборатории

=

Δ𝑥

Δ𝑡

=


[преобразование Лоренца; формулы (16)]


=

(1-β𝑟²)⁻¹/²Δ𝑥'+β𝑟(1-β𝑟²)⁻¹/²•Δ𝑡'

β𝑟(1-β𝑟²)⁻¹/²Δ𝑥'+(1-β𝑟²)⁻¹/²•Δ𝑡'

=


[в числителе и знаменателе произведено


сокращение на множитель

(1-β

𝑟

²)⁻¹

/

²

]


=

Δ𝑥'+β𝑟Δ𝑡'

β𝑟Δ𝑥'+Δ𝑡'

=


числитель и знаменатель


разделены на

Δ

𝑡'

)


=

(Δ𝑥'/Δ𝑡')+β𝑟

β𝑟(Δ𝑥'/Δ𝑡')+1

.


Окончательно


β

=

β'+β𝑟

1+β'β𝑟


(24)


(закон сложения скоростей). Иными словами, скорости не аддитивны. Лишь в предельном случае, когда скорости малы, две скорости β' и β𝑟 могут рассматриваться как аддитивные (с определённой степенью точности), если в знаменателе закона (24) произведением β'β𝑟 можно пренебречь по сравнению с единицей (с той же самой степенью точности, например 1:10 или 1:10⁶). Пример неаддитивности скоростей: пусть в момент выстрела ракета обладает скоростью, равной ¾ скорости света; пусть пуля движется относительно ракеты со скоростью, равной ¾ скорости света. Чему будет равна скорость пули относительно лаборатории? Ответ: не ¾+¾=1,5 скорости света, а


β

=

¾+¾

1+(¾)•(¾)

=

³/₂

²⁵/₁₆

=

24

25

=

0,96


(в метрах лабораторного расстояния за метр светового времени по лабораторным часам). Таким образом, релятивистский закон сложения скоростей (24) гарантирует, что никакой объект не может быть приведён в движение со скоростью света.

Определим параметр скорости таким образом, чтобы он был аддитивным!

Выяснив, что скорость сама по себе не аддитивна, мы предлагаем найти новую меру движения —«параметр скорости» θ, который должен быть аддитивным, т.е.



Параметр

скорости пули

относительно

лаборатории


=


Параметр

скорости пули

относительно

ракеты


+


Параметр

скорости ракеты

относительно

лаборатории



или


θ

=

θ'

+

θ

𝑟

.


(25)


Смысл этого параметра θ будет совершенно иным, чем смысл угла, описывающего поворот. Ни ка какой диаграмме параметр скорости нельзя изобразить в виде обычного угла, и вот по какой простой причине. Расстояния между точками на листе бумаги подчиняются законам эвклидовой геометрии. Напротив, интервалы между событиями в физическом мире определяются лоренцевой геометрией пространства-времени. Но если невозможно запечатлеть движущиеся пули и идущие часы на листе бумаги, то это никоим образом не лишает реальности указанные функционирующие объекты. Так и невозможность изобразить на листе бумаги аддитивность параметра скорости θ не сможет нас смутить, но скорее заставит взглянуть на действительный мир быстрых частиц и физики высокой энергии с тем, чтобы увидеть там активное проявление закона сложения параметра скорости. Этот закон сложения параметра скорости, θ=θ'+θ𝑟, во всех отношениях столь же реален, как и закон сложения углов поворота.

Скорость равна тангенсу гиперболическому от параметра скорости

Как же связаны между собой скорость β и параметр скорости θ? Соответствующая формула аналогична формуле, выражающей связь между наклоном и углом наклона (через тангенс угла), и имеет вид


β

=

th θ

.


(26)


Обозначение th означает «тангенс гиперболический». Функция гиперболического тангенса, как и гиперболических синуса и косинуса (sh θ и ch θ), причём th θ=sh θ/ch θ, обычны в математическом анализе. Таблицы всех этих трёх функций можно найти в любом хорошем математическом справочнике. Их формальное определение дано в табл. 8. Тем не менее нам нет необходимости обращаться к этой таблице и к справочникам; ведь всё, что нам требуется знать о функции th θ, можно без труда получить уже из её определения. А определяется она следующими двумя свойствами:

а) Эта функция должна правильно описывать закон сложения скоростей. Тогда из соотношения


β

=

β'+β𝑟

1+β'β𝑟


и требования аддитивности θ=θ'+θ𝑟 мы получаем закон сложения


th θ

=

th(θ'+θ

𝑟

)

=

th θ+th θ𝑟

1+th θ'•th θ𝑟


(27)


[см. определение (26)].

б) При малых скоростях параметр θ должен переходить в обычную характеристику движения — скорость β. Это требование означает, что функция th θ должна становиться сколь угодно близка к θ при стремлении θ к нулю. Вспомним, что обычный тангенс обычного угла стремится по величине к этому углу в пределе малых углов, если углы измеряются в радианах. Если измерять углы в градусах, то следует ввести поправочный множитель π/180°. Здесь подобным же образом было бы можно измерять параметр скорости и в единицах, аналогичных градусам и минутам, но проще всего те единицы, при которых


th θ


—⟶

малые θ

θ.


Назовём эти единицы «гиперболическими радианами»; они безразмерны.

Как можно найти связь между параметром скорости и скоростью из свойств (а) (аддитивность) и (б) (равенство th θ=θ для малых значений параметра скорости)?

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное
Эволюция физики
Эволюция физики

Книга Альберта Эйнштейна и Леопольда Инфельда знакомит читателя с развитием основных идей физики. В книге даётся «представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями», в ней показано, как каждая последующая, уточнённая картина мира закономерно сменяет предыдущую. Книга отражает известную среди специалистов эйнштейновскую оценку задач современной физики и её основных тенденций развития, которые в конечном счёте ведут к созданию единой физической теории. Мастерское изложение делает книгу А. Эйнштейна и Л. Инфельда доступной и для неспециалистов. Книга переведена на многие языки мира, неоднократно переиздавалась и переиздаётся в различных странах.

Альберт Эйнштейн , Леопольд Инфельд

Физика / Образование и наука