Читаем Физика пространства - времени полностью

Полученные выражения на первый взгляд довольно сложны. Тем не менее они вполне определённы. Мы знаем, как найти величину th θ𝑟 для любого заданного значения θ𝑟 (см. рис. 31 и сопровождающие его рассуждения). Знание величины th θ𝑟 позволяет нам вычислить выражения (30) и (31) с любой желаемой степенью точности для любого наперёд заданного значения параметра скорости. Эти две функции θ𝑟 настолько важны, что каждая из них получила своё собственное название в теории гиперболических функций. Если мы примем стандартные названия для этих функций, то это никоим образом не повлияет на наши возможности определять величины этих функций в любом интересующем нас случае без использования каких-либо руководств или справочников, своими собственными силами. Поэтому мы примем и будем в дальнейшем употреблять следующие стандартные названия:


(1-th²θ

𝑟

)⁻¹

/

²

=

ch θ

𝑟

=


=

(Косинус гиперболический

θ

𝑟

),


th θ

𝑟


(1-th²θ

𝑟

)⁻¹

/

²

=

sh θ

𝑟

=


=

(Синус гиперболический

θ

𝑟

),


Это названия, и не более чем названия! Используя их, мы найдём, что формулы преобразования Лоренца принимают вид


Δ

𝑥

=

Δ

𝑥'

ch θ

𝑟

+

Δ

𝑡'

sh θ

𝑟

,


Δ

𝑡

=

Δ

𝑥'

sh θ

𝑟

+

Δ

𝑡'

ch θ

𝑟

.


(32)


Преобразование Лоренца, выраженное через параметр скорости

Отсюда мы заключаем, что связь между старыми и новыми координатами приобретает наиболее простой вид, когда коэффициенты преобразования выражаются как гиперболические функции параметра относительного движения θ𝑟 систем отсчёта. Более того, будучи выражены с помощью гиперболических синуса и косинуса, формулы преобразования Лоренца ещё больше, чем ранее, напоминают стандартный тригонометрический вид (29) формул преобразования поворота.

Как можно лучше уяснить себе и прочувствовать свойства фигурирующих в преобразовании Лоренца гиперболических функций? Два самых интересных и существенных их свойства вытекают непосредственно из определений (30) и (31). Во-первых, отношение


sh θ𝑟

cs θ𝑟

=

th θ

𝑟


(33)


совершенно аналогично соответствующему отношению для тригонометрических функций. Во-вторых, разность квадратов двух гиперболических функций равна


ch²θ

𝑟

-

sh²θ

𝑟

=

1

1-th²θ𝑟

-

th²θ𝑟

1-th²θ𝑟

=


=

1-th²θ𝑟

1-th²θ𝑟

=

1.


(34)


Сопоставьте эту формулу с аналогичным соотношением для тригонометрических функций:


cos²(угол)

+

sin²(угол)

=

1.


(35)


Сравнение тригонометрических и гиперболических функций1)


1 Авторы здесь и в других местах вместо термина «тригонометрический» говорят «круговой». Действительно, тригонометрические функции, как это видно из дальнейшего обсуждения, тесно связаны с простейшей кривой второго порядка — окружностью, тогда как гиперболические функции связаны со свойствами другой кривой второго порядка, гиперболы. Поэтому между ними много общего. Однако в переводе мы пользуемся более принятым в отечественной литературе термином «тригонометрический».— Прим. перев.

Уравнения (34) и (35) допускают простую геометрическую интерпретацию. Отложим на рис. 32 по вертикальной оси функцию «косинус», а по горизонтальной оси — функцию «синус» (одного и того же аргумента). Уравнение (35) тогда описывает окружность единичного радиуса, и поэтому тригонометрические функции можно называть «круговыми». Напротив, уравнение (34) описывает при аналогичном построении гиперболу (рис. 33), и поэтому мы говорим о «гиперболических функциях». Знак «плюс» в соотношении cos²α+sin²α=1 происходит от того, что для получения квадрата длины вектора нужно сложить его 𝑥- и 𝑦- компоненты, возведённые в квадрат. Почему же в соотношении ch²α-sh²α=1 фигурирует знак «минус»? Потому, что квадрат пространственно-временного интервала определяется как разность квадратов удалённостей событий во времени и в пространстве.

Рис. 32. Тригонометрические функции: график связи между косинусом и синусом — окружность. Пример: (3/5)²+(4/5)²=1

Рис. 33. Гиперболические функции: график связи между гиперболическими косинусом и синусом — гипербола. Пример: (5/3)²-(4/3)²=1

Проверка того факта, что преобразование поворота в эвклидовой геометрии оставляет неизменной длину

Разные знаки в соотношениях cos²α+sin²α=1 и ch²θ-sh²θ=1 связаны с различием между понятиями длины в эвклидовой геометрии и интервала в лоренцевой геометрии. Рассмотрим по очереди более подробно и ту и другую геометрии с этой точки зрения. Удостоверимся вновь в том факте, что в эвклидовой геометрии ковариантное преобразование координат (29), выраженное теперь не через величину наклона, а через тригонометрические функции, обеспечивает выполнение инвариантности длины. Для этого вычислим в штрихованных координатах квадрат длины:


(Длина)

²

=


(

Δ

𝑥)²

+

(

Δ

𝑦)²

=


=

(

Δ

𝑥'

cos θ

𝑟

+

Δ

𝑦'

sin θ

𝑟

+

(-

Δ

𝑥'

sin θ

𝑟

+

Δ

𝑦'

cos θ

𝑟

=


=

(

Δ

𝑥')²

cos²θ

𝑟

+

2(

Δ

𝑥')(

Δ

𝑦')cos θ

𝑟

sin θ

𝑟

+

(

Δ

𝑦')²

sin²θ

𝑟

+


+

(

Δ

𝑥')²

sin²θ

𝑟

-

2(

Δ

𝑥')(

Δ

𝑦')sin θ

𝑟

cos θ

𝑟

+

(

Δ

𝑦')²

cos²θ

𝑟

=


=

[(

Δ

𝑥')²

+

(

Δ

𝑦')²]

(sin²θ

𝑟

+

cos²θ

𝑟

)

=


=

(

Δ

𝑥')²

+

(

Δ

𝑦')²


(подчёркнутые члены сокращаются).


Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное
Эволюция физики
Эволюция физики

Книга Альберта Эйнштейна и Леопольда Инфельда знакомит читателя с развитием основных идей физики. В книге даётся «представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями», в ней показано, как каждая последующая, уточнённая картина мира закономерно сменяет предыдущую. Книга отражает известную среди специалистов эйнштейновскую оценку задач современной физики и её основных тенденций развития, которые в конечном счёте ведут к созданию единой физической теории. Мастерское изложение делает книгу А. Эйнштейна и Л. Инфельда доступной и для неспециалистов. Книга переведена на многие языки мира, неоднократно переиздавалась и переиздаётся в различных странах.

Альберт Эйнштейн , Леопольд Инфельд

Физика / Образование и наука