Читаем Физика пространства - времени полностью

На языке параметра скорости можно сказать, что ракета обладает конечным параметром скорости θ𝑟, тогда как величина параметра скорости фотона (β=1) бесконечна (θ'=∞; см. асимптотическую часть кривой в верхней правой части рис. 31). Прибавьте к бесконечности конечное число, и вы получите снова бесконечность в качестве суммы θ=θ'+θ𝑟. Поэтому скорость фотона в лабораторной системе отсчёта равна β=th θ=th ∞=1, т.е. это снова скорость света. Мы замкнули круг, вновь вернувшись к идее, лежащей в основании теории относительности: скорость света имеет одну и ту же величину во всех системах отсчёта.

Простота описания движения с помощью параметра скорости

Мы пришли к заключению, что естественной характеристикой движения является параметр скорости, подчиняющийся простому закону сложения: θ=θ'+θ𝑟. Но почему же наша интуиция не подсказала нам сразу идеи введения этого параметра? Почему гиперболические углы не знакомы всякому школьнику так же хорошо, как обычные углы? Ответ ка это прост. Обыденный опыт сталкивает нас со всякими углами — и большими, и малыми. Поэтому не найдётся простачка, который стал бы, складывая наклоны 𝑆'=1 (угол в 45°) и 𝑆𝑟=1 (ещё раз 45°), утверждать, что он получит наклон, равный 𝑆=𝑆'+𝑆𝑟=2 (т.е. угол в 63°26', что неверно!). Все знают, что правильный путь — это складывать углы (сумма в нашем примере равна 45°+ 45°=90°, чему соответствует наклон 𝑆=∞). Но обыденный опыт не сталкивает нас со скоростями, близкими к скорости света. Автомобили, реальные ракеты и реальные пули движутся со скоростями, крайне малыми по сравнению со скоростью света. Поэтому и потребовалось долгое время, пока люди не узнали истинной физики пространства-времени. Но теперь, наконец, мы поняли разницу природы закона сложения скоростей [громоздкое уравнение (24)] и закона сложения параметров скорости [простое уравнение (21): θ=θ'+θ𝑟]. Более того, те наблюдения, которые прежде обескураживали (например, равенство величины скорости света во всех системах отсчёта), стали описываться очень просто на языке параметра скорости. К тому же этот параметр, как и всё, что входит вместе с ним в пространственно-временную структуру физики, совершенно необходим. Если вы хотите описать природу физического мира такой, какая она на самом деле у этого четырёхмерного мира, то у вас нет никакого другого выбора, кроме описанных выше идей. Эта железная необходимость становится всё очевиднее по мере того, как в обиход нашей цивилизации, нашей индустрии входят электронные и ядерные установки, а вместе с ними — сверхбыстрые частицы.

Обходного пути нет! Параметр скорости — такой же простой способ для описания скорости движения, как обычный угол — для описания наклона. Но, согласившись с этим выводом, какую выгоду извлечём мы, пытаясь упростить формулы преобразования Лоренца?

У прощение эвклидова преобразования поворота путём введения угла

Для того чтобы сориентироваться в этом вопросе, рассмотрим сначала аналогичную задачу в эвклидовой геометрии на плоскости 𝑥𝑦. Станет ли формула (19), выражающая одну систему координат через другую,


Δ

𝑥

=

(1+𝑆

𝑟

²)⁻¹

/

²

Δ

𝑥'

+

𝑆

𝑟

(1+𝑆

𝑟

²)⁻¹

/

²

Δ

𝑦'

,


Δ

𝑦

=-

𝑆

𝑟

(1+𝑆

𝑟

²)⁻¹

/

²

Δ

𝑥'

+

(1+𝑆

𝑟

²)⁻¹

/

²

Δ

𝑦'

,


менее сложной, если выразить относительный наклон 𝑆𝑟 осей 𝑦 и 𝑦' через обычный угол θ𝑟? Ответ: коэффициенты в преобразовании поворота принимают вид


(1+𝑆

𝑟

²)⁻¹

/

²

=

(1+tg²θ

𝑟

)⁻¹

/

²

=


=


cos²θ𝑟+sin²θ𝑟

cos²θ𝑟



⁻¹/²


=


1

cos²θ𝑟



⁻¹/²


=

cos θ

𝑟

.


и


𝑆

𝑟

(1+𝑆

𝑟

²)⁻¹

/

²

=

tg θ

𝑟

cos θ

𝑟

=


=

sin θ𝑟

cos θ𝑟

=

sin θ

𝑟

.


Поэтому формулы преобразования переходят в


Δ

𝑥

=

Δ

𝑥'

cos θ

𝑟

+

Δ

𝑦'

sin θ

𝑟

,


Δ

𝑦

=-

Δ

𝑥'

sin θ

𝑟

+

Δ

𝑦'

cos θ

𝑟

,


(29)


и мы можем заключить, что связь между старыми и новыми координатами приобретает наипростейший вид, если коэффициенты в ковариантных преобразованиях выразить через «тригонометрические», или «круговые», функции угла поворота.

Упрощение формул преобразования Лоренца путём введения параметра скорости

Обратимся теперь к формулам преобразования Лоренца, записанным через относительную скорость:


Δ

𝑥

=

(1-β

𝑟

²)⁻¹

/

²

Δ

𝑥'

+

β

𝑟

(1-β

𝑟

²)⁻¹

/

²

Δ

𝑡'

,


Δ

𝑡

=

β

𝑟

(1-β

𝑟

²)⁻¹

/

²

Δ

𝑥'

+

(1-β

𝑟

²)⁻¹

/

²

Δ

𝑡'

.


Как станет выглядеть эта пара уравнений, если мы выразим в ней скорость β𝑟 через «улучшенную» характеристику движения θ𝑟? Ответ таков. Вспомним, что скорость и параметр скорости связаны между собой соотношением


β

𝑟

=

th θ

𝑟

.


Отметим, что коэффициенты в формулах преобразования Лоренца зависят от β𝑟 и тем самым от θ𝑟. Эти коэффициенты равны


(1-β

𝑟

²)⁻¹

/

²

=

(1-th²θ

𝑟

)⁻¹

/

²


(30)


и


β

𝑟

(1-β

𝑟

²)⁻¹

/

²

=

th θ

𝑟

(1-th²θ

𝑟

)⁻¹

/

²

.


(31)


Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное
Эволюция физики
Эволюция физики

Книга Альберта Эйнштейна и Леопольда Инфельда знакомит читателя с развитием основных идей физики. В книге даётся «представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями», в ней показано, как каждая последующая, уточнённая картина мира закономерно сменяет предыдущую. Книга отражает известную среди специалистов эйнштейновскую оценку задач современной физики и её основных тенденций развития, которые в конечном счёте ведут к созданию единой физической теории. Мастерское изложение делает книгу А. Эйнштейна и Л. Инфельда доступной и для неспециалистов. Книга переведена на многие языки мира, неоднократно переиздавалась и переиздаётся в различных странах.

Альберт Эйнштейн , Леопольд Инфельд

Физика / Образование и наука