Читаем Фрактальная геометрия природы полностью

Прежде всего рассмотрим случай неслучайного N. При сильном условии bE−N≥½bE−1−1 любая заданная поверхность, заключенная между двумя ячейками предтворога, всегда выживает. Даже в самой опасной ситуации, когда вокруг упомянутой поверхности скапливаются все не выживающие субвихри, их количества совершенно недостаточно для разрыва существующей тропы (причем не почти наверное, а абсолютно точно). Более слабое условие bE−N≥½bE−1 дает тот же результат, но уже на абсолютно, а лишь почти наверное. Получающийся творог состоит из листов поверхности, окружающих отдельные лакуны, заполненные сывороткой. Две точки сыворотки, расположенные в разных лакунах, нельзя соединить никаким образом. Топология такого творога почти наверняка тождественна топологии ковра Серпинского или фрактальной пены (см. главу 14).

Если применить то же условие к неограниченному створаживанию, то отсутствие перколяции из разряда совершенно невозможных событий перейдет в просто маловероятные.

Рассмотрим некоторые численные примеры на плоскости (E=2). При b=3 более слабое (и более полезное) из вышеприведенных условий дает неравенство N>7,5, которое имеет единственное решение: N=8 (равное значению N для ковра Серпинского). По мере того как b→∞ верхний предел для Dкрит подходит все ближе к 2.

Нижний предел дляDкрит. При b≫1 справедливо неравенство Dкритz>E+logbpкрит, где pкрит - критическая вероятность в бернуллиевой перколяции. Существование этого предела обусловлено тем, что первый этап случайного фрактального створаживания сводится к построению бернуллиевой решетки, каждая ячейка которой является проводящей с вероятностью bD−E. Если эта вероятность меньше pкрит, то электропроводность решетки – событие маловероятное. А если такая решетка все-таки проводит ток, то происходит это, скорее всего, благодаря одной-единственной цепочке проводящих ячеек. На втором этапе случайного фрактального створаживания мы строим бернуллиеву решетку с вероятностью bD−E уже в каждой проводящей ячейке решетки первого этапа. И это наверняка разорвет существующую перколяционную цепочку.

При b→∞ новый предел стремится к E и, в своей области применения (b≫1), превосходит предел ½(E+1). Таким образом, Dкрит→E.

исывается в обязательном порядке.

Общие вершины, рассматриваемые первыми, порождают «случайные цепи», которые представляют собой прямое обобщение некоторых кривых Коха или Пеано.

Что касается общих сторон, то от них берет начало гораздо более интересное и привлекательное семейство фракталов, представленное впервые в [393] и [394]. Одни представители этого семейства – «простые» кривые, неветвящиеся и не содержащие самопересечений, другие имеют вид петель и деревьев; кроме того, процесс может порождать и поверхности. Я предлагаю называть такие фигуры сквиг - кривыми и сквиг - поверхностями.

Я отдаю сквиг - кривым предпочтение перед случайными цепями главным образом потому, что их меньшее непостоянство, по всей видимости, отражает некое фундаментальное свойство пространства.

Линейные сквиг – кривые можно считать приближенными моделями линейных полимеров и речных русел, петлеобразными сквиг – кривыми моделируются береговые линии, а древовидными – речные бассейны.

СЛУЧАЙНЫЕ ЦЕПИ И ЦЕПНЫЕ КРИВЫЕ

Совокупность белых областей на рис. 71 можно рассматривать как цепь, составленную из треугольников, соединенных вершинами. Следующий этап построения заменяет каждый треугольник подцепочкой, целиком заключенной внутри него, и дает в результате цепь, составленную из меньших треугольников, снова соединенных вершинами. Такая последовательность вложенных друг в друга цепей сходится в пределе к кривой Коха. (Процедура напоминает построение цепей Пуанкаре в главе 18.)

Подобным образом можно поострить и многие другие кривые Коха – например, салфетку Серпинского (рис. 205); цепью в этом случае послужит фигура, остающаяся после удаления центральных треугольных трем.

Этот метод построения прекрасно рандомизируется – например, можно заменить треугольник двумя треугольниками с коэффициентом r=1/√3, как на рис. 71, либо тремя треугольниками с r=1/3.

ПРОСТЕЙШИЕ СКВИГ – КРИВЫЕ [393]

Простейшей сквиг – кривой является случайная фрактальная кривая, построенная в [393, 394] и более подробно изученная в [473, 474, 475]. Эта модель русла реки, созданная по образу и подобию известных картинок из учебников по географии и геологии, на которых изображены последовательные этапы развития реки, промывающей себе путь через долину; с каждым этапом будущее русло приобретает все более четкие очертания.

Перед началом k- го этапа река течет в «предсквиг – долине», составленной из ячеек правильной треугольной решетки со стороной 2−k. Разумеется, ни в одну ячейку нельзя наведываться более чем однажды, к тому же каждое звено в решетке должно касаться сторонами двух соседних звеньев, оставляя третью сторону «свободной».

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература