Следующий пункт сравнения связан с числом произвольных решений, которые приходится принимать «создателю» при том и другом подходе. Подход Коха к построению неслучайных или случайных фракталов необычайно эффективен (он, в частности, позволяет достичь любой желаемой размерности в рамках относительно простой кривой), однако он требует от создателя принятия многочисленных специфических решений, причем все они, так или иначе, зависят друг от друга. Значение
Все мы знаем, что наука немало настрадалась от недостатка в евклидовой геометрии моделей для описания негладких природных форм, а потому известие о том, что фрактальная геометрия способна справиться с этим, несомненно, бедственным положением, должно, казалось бы, наполнить наши сердца восторгом. Боюсь, однако, что на настоящей стадии развития теории восторги придется несколько попридержать и постараться обойтись как можно меньшим числом произвольных решений.
В этом свете факт наличия весьма серьезных ограничений, налагаемых геометрией плоскости на построение сквиг – кривых (в результате чего сквиг - кривые получаются более предсказуемыми и менее разнообразными), выглядит достоинством.
РАЗМЕРНОСТЬ
Следует обратить самое пристальное внимание на размерность сквиг – кривых
ВЕТВЯЩИЕСЯ СКВИГ - КРИВЫЕ
Вернемся к построению речного русла. Вот мы заменили треугольный интервал долины участком поддолины, состоящим из одного или трех подтреугольников; представьте теперь, что оставшиеся три (или один) подтреугольника вдруг решают отвести от основного русла собственную поддолину. Построение нового русла полностью определяется уже известным процессом. Точки, в которых подреки пересекают границы между треугольниками, выбираются с помощью той же системы, что используется в главной реке. В пределе конструкция сходится к древовидной кривой, которая заполняет треугольник случайным образом, как можно видеть на рисунке:
ОЧЕНЬ КРАТКО ЕЩЕ О ДВУХ ПРЕЦЕДЕНТАХ
Тот факт, что столь грубая модель, как мои линейные сквиг – кривые, может дать результат, вполне сносно – хоть и приблизительно – согласующийся с наблюдаемой размерностью реальных речных русел и бассейнов, представляется мне весьма интересным и даже многозначительным.
С помощью этих кривых можно также найти размерность общепринятой модели для сильно разбавленных растворов линейных полимеров – случайного блуждания без самопересечений (СББС) на решетке (см. главу 36).
Лучшая (чем в случае СББС) приспособленность сквиг – кривых к ограничениям, налагаемым геометрией плоскости, объясняется, очевидно, интерполяционным характером их построения.
СКВИГ–ПОВЕРХНОСТИ
Сквиг – поверхности строятся на кубе, разделенном на
Во многих случаях кривую Коха с заранее заданной размерностью
Рис. 322. Случайное побережье Коха (размерность
Общая форма случайного острова Коха, построенного таким способом, сильно зависит от исходной фигуры. В частности, все начальные симметрии явственно прослеживаются на любом из этапов построения. По этой причине (равно как и по другим, описанным в главе 24) метод построения случайной кривой Коха путем случайной перетасовки ее элементов имеет весьма ограниченную область применения.
Рис. 323. Случайная кривая Пеано (размерность
Изображенный ниже генератор вкупе с инициатором [0,1] дает в пределе кривую, заполняющую треугольник.