Положение и вид генератора определяется четностью номера интервала в терагоне. На интервалах с нечетными номерами вышеприведенный (т.е. прямой,
Для того чтобы за изменениями терагона было легче проследить, каждый интервал заменен двумя, причем добавочная концевая точка является серединой «крыши» этого интервала.
Рис. 324. Треугольник и сквиг — кривая
Здесь проиллюстрировано поэтапное построение простейшей сквиг – кривой – каждый последующий этап совмещен с предыдущим и показан более темным оттенком серого цвета. Обратите также внимание на следующее обстоятельство: то, что мы не видим светлого оттенка под темным, не означает, что светлая область в этом месте прерывается. Начинается построение светло-серым треугольником, а заканчивается кривой черного цвета. Масштаб изображения этапов с 6 по 10 несколько больше масштаба для этапов с 0 по 5. Сами этапы описаны в тексте главы.
Рис. 325. Шестиквиговая береговая линия
На этом рисунке изображены шесть сквиг – кривых, соединенных концами и образующих петлю без самопересечений. Размерность фигуры очень близка к
25 БРОУНОВСКОЕ ДВИЖЕНИЕ И БРОУНОВСКИЕ ФРАКТАЛЫ
Место этой главы в настоящем эссе представляет собой в некотором роде результат компромисса. Логичнее было бы поместить такую главу в следующей части, однако некоторые ее разделы являются необходимым предисловием к главе 26.
РОЛЬ БРОУНОВСКОГО ДВИЖЕНИЯ
Как мы знаем из главы 2, Жану Перрену пришла однажды в голову блестящая идея сравнить физическое броуновское движение с непрерывными недифференцируемыми кривыми. Идея Перрена послужила источником вдохновения для юного Норберта Винера, примерно в 1920 г. определившего и исследовавшего математическую реализацию броуновского движения, которую и сейчас нередко называют винеровским процессом. Много позже стало известно, что тот же процесс был подробно, хотя и не так строго, рассмотрен в докторской диссертации Луи Башелье [12] (см. также главы 37 и 39).
Странно, что само по себе броуновское движение – при всей своей чрезвычайной важности во многих других областях – не находит в настоящем эссе никакого нового приложения. Время от времени оно помогает вчерне набросать проблему, однако, и в этих случаях при дальнейшем ее рассмотрении оно непременно заменяется каким-либо другим процессом. И все же во многих случаях можно зайти, на удивление, далеко просто модифицируя броуновское движение; нужно только следить за тем, чтобы модификации оставались масштабно-инвариантными.
По этой и иным причинам остальные случайные фракталы нельзя оценить по достоинству без досконального изучения и понимания конкретных свойств этого их прототипа. Однако миллионы страниц, посвященных данной теме, либо упоминают вскользь, либо вовсе опускают некоторые весьма важные моменты, рассмотрением которых мы и займемся в настоящей главе. Если читатель сочтет, что мы заходим слишком далеко, он – как здесь принято – вполне может перейти к следующему разделу или даже к следующей главе.
БРОУНОВСКИЕ ФРАКТАЛЫ: ФУНКЦИЯ И СЛЕД
К сожалению, термин «броуновское движение» неоднозначен. Во-первых, этим термином можно обозначить график выражения
Когда неоднозначность начинает угрожать ясности моих рассуждений, я разделяю термины и говорю либо о броуновской функции, либо о броуновском следе. Мы уже сталкивались с такой неоднозначностью при рассмотрении кривых Коха, однако здесь она более очевидна благодаря термину «движение».