На k
- м этапе эта предсквиг – кривая заменяется другой, более точной, построенной на интерполированной решетке со стороной 2−k−1. Очевидно, что предсквиг – кривая (k+1)- го порядка обязательно содержит половину каждой стороны, общей для двух соседних звеньев k- го порядка. Верно также строгое обратное утверждение, а именно: положение общих (несвободных) половин сторон однозначно определяет вид предсквиг – кривой k- го порядка.Симметрично – случайные сквиг – кривые.
Будем выбирать половину стороны, которую следует оставить свободной, случайным образом, полагая, что каждый из вариантов равновероятен. Тогда число звеньев (k+1)- го порядка внутри звена k- го порядка равно 1 с вероятностью 1/4 или 3 с вероятностью 3/4. Среднее значение составит 2,5.С каждым этапом долина сужается и в пределе асимптотически сходится в некую фрактальную кривую. Я, естественно, предположил, что размерность этой предельной кривой равна D=
ln2,5/ln2=1,3219. Доказательство (весьма деликатное, надо сказать) можно найти в [473].Асимметрично – случайные сквиг – кривые.
Предположим, что вероятность того, что после разделения стороны треугольника на две половины поддолина выберет, скажем, «левую», не равна 1/2. Понятия «правый» и «левый» можно определять либо с позиции наблюдателя, смотрящего в направлении вниз по реке, либо с позиции наблюдателя, находящегося в центре разделяемого треугольника. В первом случае D=ln[3−p2−(1−p2)]/ln2 и может принимать значения от 1 до ln2,5/ln2. Во втором случае D=ln[3−2p(1−p)]/ln2 и может принимать значения от ln2,5/ln2 до ln3/ln2. В общей сложности допустимы все значения D от 1 до ln3/ln2.АЛЬТЕРНАТИВНЫЕ РЕШЕТКИ И СКВИГ – КРИВЫЕ
Используя другие интерполированные решетки, можно получить сквиг – кривые иного вида. Во всех случаях, когда для идентификации предсквиг – кривой (k+1)
- го порядка достаточно знать, в каких интервалах она пересекает границу между двумя ячейками k - го порядка возможно непосредственное обобщение. В качестве примера можно привести прямоугольную решетку, в которой отношение длинной стороны ячейки к короткой имеет вид √b, и каждая ячейка интерполируется в b ячеек, расположенных поперек исходной ячейки.Иначе обстоит дело с треугольными решетками, ячейки которых интерполируются в b
2≥9 треугольников, или с квадратными решетками, где ячейки интерполируются в b2≥4 квадратов. В обоих случаях интерполяция предсквиг – кривых требует дополнительных шагов.При b=3
(треугольная решетка) или b=2 (квадратная решетка) достаточно одного дополнительного шага – вполне, впрочем, естественного. В самом деле, представьте себе четыре «луча», исходящего из центра квадрата и разделяющих его на четыре части (либо шесть лучей, разделяющих треугольник на девять частей). Как только мы оставляем свободным один из этих лучей, поддолина оказывается полностью определена. Согласно моему описанию сквиг – кривых, луч, который следует оставить свободным, выбирается случайным образом, причем каждый из вариантов равновероятен. Размерности при этом принимают следующие значения: D~1,3347 (для треугольников, разделенных на девять частей) и D~1,2886 (для квадратов, разделенных на четыре части). Учитывая, что для простейших сквиг – кривых D~1,3219, можно заключить, что все сквиг – кривые характеризуются приблизительно одинаковой размерностью D, значение которой находится в окрестности 4/3.В тех случаях, когда ячейка разделяется на b
2 частей, где b>3 (для треугольников) или b>2 (для квадратов), для определения поддолины необходимо вводить различные дополнительные факторы, отчего конструкция приобретает все более произвольный характер. При этом сущность сквиг – построения, понимаемая в свете рассуждений последующего раздела, оказывается потерянной.ЦЕПНЫЕ КРИВЫЕ И СКВИГ – КРИВЫЕ: СРАВНЕНИЕ
Остановимся на минуту и припомним, что независимо от того, получаем ли мы фрактальную кривую цепным методом Чезаро или с помощью оригинального метода Коха, погрешность, возникающая при остановке процесса, распределяется вдоль кривой очень неоднородно. Полезным здесь может оказаться тот факт, что некоторые точки уже после конечного числа этапов подходят к своему предельному положению бесконечно близко. Это обстоятельство, к примеру, помогло Коху в отыскании простейшей кривой, не имеющей касательных ни в одной своей точке. Однако сущность понятия кривой становится гораздо яснее, если рассматривать кривую как предел полосы однородной ширины. Мои сквиг – кривые вполне отвечают этому условию.