Читаем Фрактальная геометрия природы полностью

На k- м этапе эта предсквиг – кривая заменяется другой, более точной, построенной на интерполированной решетке со стороной 2−k−1. Очевидно, что предсквиг – кривая (k+1)- го порядка обязательно содержит половину каждой стороны, общей для двух соседних звеньев k- го порядка. Верно также строгое обратное утверждение, а именно: положение общих (несвободных) половин сторон однозначно определяет вид предсквиг – кривой k- го порядка.

Симметрично – случайные сквиг – кривые. Будем выбирать половину стороны, которую следует оставить свободной, случайным образом, полагая, что каждый из вариантов равновероятен. Тогда число звеньев (k+1)- го порядка внутри звена k- го порядка равно 1 с вероятностью 1/4 или 3 с вероятностью 3/4. Среднее значение составит 2,5.

С каждым этапом долина сужается и в пределе асимптотически сходится в некую фрактальную кривую. Я, естественно, предположил, что размерность этой предельной кривой равна D=ln2,5/ln2=1,3219. Доказательство (весьма деликатное, надо сказать) можно найти в [473].

Асимметрично – случайные сквиг – кривые. Предположим, что вероятность того, что после разделения стороны треугольника на две половины поддолина выберет, скажем, «левую», не равна 1/2. Понятия «правый» и «левый» можно определять либо с позиции наблюдателя, смотрящего в направлении вниз по реке, либо с позиции наблюдателя, находящегося в центре разделяемого треугольника. В первом случае D=ln[3−p2−(1−p2)]/ln2 и может принимать значения от 1 до ln2,5/ln2. Во втором случае D=ln[3−2p(1−p)]/ln2 и может принимать значения от ln2,5/ln2 до ln3/ln2. В общей сложности допустимы все значения D от 1 до ln3/ln2.

АЛЬТЕРНАТИВНЫЕ РЕШЕТКИ И СКВИГ – КРИВЫЕ

Используя другие интерполированные решетки, можно получить сквиг – кривые иного вида. Во всех случаях, когда для идентификации предсквиг – кривой (k+1) - го порядка достаточно знать, в каких интервалах она пересекает границу между двумя ячейками k - го порядка возможно непосредственное обобщение. В качестве примера можно привести прямоугольную решетку, в которой отношение длинной стороны ячейки к короткой имеет вид √b, и каждая ячейка интерполируется в b ячеек, расположенных поперек исходной ячейки.

Иначе обстоит дело с треугольными решетками, ячейки которых интерполируются в b2≥9 треугольников, или с квадратными решетками, где ячейки интерполируются в b2≥4 квадратов. В обоих случаях интерполяция предсквиг – кривых требует дополнительных шагов.

При b=3 (треугольная решетка) или b=2 (квадратная решетка) достаточно одного дополнительного шага – вполне, впрочем, естественного. В самом деле, представьте себе четыре «луча», исходящего из центра квадрата и разделяющих его на четыре части (либо шесть лучей, разделяющих треугольник на девять частей). Как только мы оставляем свободным один из этих лучей, поддолина оказывается полностью определена. Согласно моему описанию сквиг – кривых, луч, который следует оставить свободным, выбирается случайным образом, причем каждый из вариантов равновероятен. Размерности при этом принимают следующие значения: D~1,3347 (для треугольников, разделенных на девять частей) и D~1,2886 (для квадратов, разделенных на четыре части). Учитывая, что для простейших сквиг – кривых D~1,3219, можно заключить, что все сквиг – кривые характеризуются приблизительно одинаковой размерностью D, значение которой находится в окрестности 4/3.

В тех случаях, когда ячейка разделяется на b2 частей, где b>3 (для треугольников) или b>2 (для квадратов), для определения поддолины необходимо вводить различные дополнительные факторы, отчего конструкция приобретает все более произвольный характер. При этом сущность сквиг – построения, понимаемая в свете рассуждений последующего раздела, оказывается потерянной.

ЦЕПНЫЕ КРИВЫЕ И СКВИГ – КРИВЫЕ: СРАВНЕНИЕ

Остановимся на минуту и припомним, что независимо от того, получаем ли мы фрактальную кривую цепным методом Чезаро или с помощью оригинального метода Коха, погрешность, возникающая при остановке процесса, распределяется вдоль кривой очень неоднородно. Полезным здесь может оказаться тот факт, что некоторые точки уже после конечного числа этапов подходят к своему предельному положению бесконечно близко. Это обстоятельство, к примеру, помогло Коху в отыскании простейшей кривой, не имеющей касательных ни в одной своей точке. Однако сущность понятия кривой становится гораздо яснее, если рассматривать кривую как предел полосы однородной ширины. Мои сквиг – кривые вполне отвечают этому условию.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература