Для разработки этой интереснейшей непоследовательности больше всех сделал Абрахам Робинсон (1918–1974). Биография у Робинсона была необычайно бурная для логика, а образ жизни – светский и даже аристократический. Он родился в силезском шахтерском поселке Вальденбург (теперь это польский город Валбжих) и подростком вместе с семьей бежал от фашистов в Палестину. Там он изучал математику и философию в Еврейском университете и при этом вступил в подпольную сионистскую военную организацию «Хагана». Робинсон получил стипендию в Сорбонне и очутился там незадолго до прихода немцев. Ему удалось в последний момент перебраться в Лондон во время бомбежек, и там он стал сначала сержантом движения «Сражающаяся Франция», а затем техническим специалистом в британских ВВС. Несмотря на ужасы и сумятицу военного времени, Робинсон продолжал заниматься чистой математикой и логикой и при этом прекрасно работал на армию – проводил исследования по аэродинамике и «теории крыла». После войны Робинсон с женой, талантливой актрисой и модным фотографом из Вены, частенько появлялись на парижских показах коллекций высокой моды. Робинсон читал лекции как приглашенный профессор в Университете Торонто и Еврейском университете, а затем в начале шестидесятых получил должность профессора философии и математики в Калифорнийском университете в Лос-Анджелесе, которую до него занимал Рудольф Карнап. Поддавшись очарованию Голливуда, Робинсон с женой жили на вилле в каньоне Мандевиль, построенной в стиле Ле Корбюзье, и дружили с актером Оскаром Вернером. Работы Робинсона делали его одним из величайших специалистов по математической логике в мире, а при этом он был светским львом и бонвиваном – и к тому же одним из первых открыто высказывался против Вьетнамской войны. В конце шестидесятых он перешел в Йель и помог превратить его в мировой центр логики, а в 1974 году, в возрасте 55 лет, умер от рака поджелудочной железы.
Величайшим и гениальнейшим достижением Робинсона было то, что он в одиночку реабилитировал идею бесконечно малого. Исходил он из того, что размышлял о языке математики как о формальном объекте, подлежащем логическому изучению и манипулированию. Вот вкратце суть его рассуждений.
Начнем с математической теории, которая описывает, как работает старая добрая арифметика: обыкновенные дроби, их сложение и умножение и так далее. Для краткости назовем теорию арифметики
А теперь добавим кое-что в теорию арифметики
(Новая аксиома № 1).
(Новая аксиома № 2).
(Новая аксиома № 3).
…
(Новая аксиома № 1 000 000).
(Новая аксиома № 1 000 001).
И так далее до бесконечности.
Теперь обозначим обогащенную теорию, которую мы получим, если начнем с
Как ему это удалось? Предположим,
(Новая аксиома № 147).
Таким образом, мы предполагаем, что ни одна из новых аксиом