Первая неопредленная задача на латинскомъ язык изъ тхъ, которыя дошли до насъ, содержится въ сборник Алькуина (въ VIII ст. по Р. X.) и выражается такъ: «100 шеффелей раздлить между мужчинами, женщинами и дтьми и дать при этомъ мужчин по 3 шеффеля, женщин по 2 и ребенку по 1/2 шефф.» Ршеніемъ этой задачи могло бы быть, напр., 24, 40 и 36; у Алькуина дано 11, 15, 74. Кром названія «двичье», это правило имло иногда титулъ «слпого» правила и опять по той же самой причин, именно, что въ неопредлешшхъ задачахъ этого рода упоминалось о слпцахъ. Кстати скажемъ, что были и другія курьезныя правила, въ род правила «крокодиловъ», правила «роговъ» и т. п., и назывались они по той своей особенности, что въ задачахъ, которыя являлись характеристичными, упоминалось про крокодидовъ, рога и т. д.
Многое множество тхъ задачъ, которыми наполняются современные намъ сборники, идутъ изъ глубокой древности, пережили многія тясячелтія и терпливо переписываются однимъ составителемъ изъ другого.
Напр., извстная задача о бассейнахъ, которые наполняются трубами, и изъ которыхъ вода выливается, пользовалась вниманіем уже во времена Герона Александрійскаго (во 2 в. до Р. X.). Метрдоръ, жившій при Константин Великомъ, даетъ задачу съ 4 трубами изъ которыхъ 1-я можетъ наполнить бассейнъ въ день, 2-я—въ 5 3-я—въ 3 и 4-я—въ 4 дня. Эту же задачу мы видимъ и у индусовъ во времена математика Аріабгатты, въ 5 в. по Р. X. Она же встрчается въ русскихъ старинныхъ ариметикахъ, и она же помщается во всхъ новйшихъ сборникахъ. Точно также задача о собак догоняющей зайца, имется уже въ сборник Алькуина (въ 8 ст. по Р. X.). Заяцъ впереди собаки на 150 футовъ, и онъ пробгает 7 футовъ въ то время, какъ собака 9; для ршенія 150 предлагается раздлить пополамъ.
Ршеніе ариметическихъ задачъ всегда было несвободно от разныхъ недочетовъ, которые имютъ мсто и въ наше время и объясняются исторически. Во-первыхъ, даются ученикамъ иногда такія задачи, которыя псрежили самихъ себя и утеряли смыслъ, пс тому что времена измнились; примромъ можетъ служить задача о курьерахъ; теперь уже везд телеграфы, телефоны, сообщенія по желзнымъ дорогамъ, и поэтому нтъ никакой надобности посылать конныхъ курьеровъ, это было 50—100 лтъ тому назадъ, а сейчас это анахронизмъ. Во-вторыхъ, ршеніе задачъ никакъ не можетъ освободиться отъ того элемента механичности, который сжился съ ним въ теченіе многихъ сотенъ лтъ. Прежде всякая школа была главнымъ образомъ школой спеціальной и имла ввиду сообщить ученику навыки и умнья, пригодные ему для извстной отрасли жизненной дятельности. Теперь, наоборотъ, школа проникла въ масс народа, сдлалась общедоступной и должна быть поэтому общеобразовательной, развивающей душевныя силы дтей и воспитывающей.
Съ этой точки зрнія не такъ важно количество задачъ, и не такъ важны ихъ отдлы, какъ важенъ путь ихъ ршенія. Надо чтобы ршеніе задачъ основывалось на соображеніи и развивало сообразительность, а не строило свою опору только на привычк и простомъ запоминаніи.