Читаем Квантовая механика и интегралы по траекториям полностью

Мысленный эксперимент. Физическая интерпретация квантовой механики и её связь с классической станут более понятными, если мы рассмотрим другой, немного более сложный пример. Предположим, что в момент времени 𝑡0 частица выходит из начала координат, а спустя время 𝑇 мы находим её в некоторой точке 𝑥0. В классической механике мы говорили бы, что частица обладает скоростью 𝑣0=𝑥0/𝑇. При этом подразумевалось бы, что если частица будет продолжать двигаться дальше, то за время τ она пройдёт дополнительное расстояние 𝑣0τ. Чтобы проанализировать это с точки зрения квантовой механики, попытаемся решить следующую задачу.

В момент времени 𝑡0 частица выходит из начала координат 𝑥0. Пусть нам известно, что спустя время 𝑇 она находится в окрестности 𝑥0±𝑏 точки 𝑥0. Спрашивается, какова вероятность обнаружить частицу ещё через время τ на расстоянии 𝑥 от точки 𝑥0? Амплитуду перехода в точку 𝑥 в момент времени 𝑡+τ можно рассматривать как сумму вкладов от всех траекторий, соединяющих начало координат с конечной точкой, при условии, что в момент времени 𝑇 соответствующие траектории лежат в интервале 𝑥0±𝑏.

Эта амплитуда вычисляется очень быстро, однако стоит сначала разобрать, какого сорта эксперимент мы здесь рассматриваем. Каким образом можно узнать, что данная частица проходит в пределах ±𝑏 от точки 𝑥0? Можно посмотреть, как обычно, находится ли частица в момент времени 𝑇 в интервале 𝑥0±𝑏. Это был бы наиболее естественный способ, однако вследствие сложного взаимодействия электрона с прибором детальный анализ его является (по сравнению с другими возможностями) несколько затруднительным.

Фиг. 3.3. Движение частицы сквозь щель.

Известно, что частица, выходящая в момент времени 𝑡=0 из точки 𝑥=0, проходит между точками 𝑥0-𝑏 и 𝑥0+𝑏 в момент времени 𝑡=𝑇.

Мы хотим вычислить вероятность нахождения частицы в некоторой точке 𝑥 спустя время τ, т.е. когда 𝑡=𝑇+τ. Согласно классическим законам, частица должна находиться между 𝑥0(τ/𝑇)+𝑏(1+τ/𝑇) и 𝑥0(τ/𝑇)-𝑏(1+τ/𝑇), т.е. внутри ортогональной проекции щели. Однако квантовомеханические законы показывают, что частица может с отличной от нуля вероятностью находиться и вне этих классических пределов.

Эту задачу нельзя решать, применяя лишь закон движения для свободной частицы, так как щель ограничивает движение частицы. Поэтому разобьём задачу на две — соответственно двум последовательным движениям свободной частицы: в первой задаче рассматривается движение частицы из точки 𝑥=0 при 𝑡=0 в точку 𝑥=𝑥0+𝑦 при 𝑡=𝑇, где |𝑦|≤𝑏; во второй — движение из точки 𝑥0+𝑦 при 𝑡=𝑇 в точку 𝑥 при 𝑡=𝑇+τ. Полная амплитуда вероятности, как это видно из формулы (3.19), равна интегралу от произведения ядер для двух таких движений свободной частицы.

Предположим, что в момент времени 𝑇 нами просматривается, скажем, с помощью яркого света, вся ось 𝑥 за исключением интервала 𝑥0±𝑏. Как только частица обнаружена, мы прерываем опыт. Примем во внимание лишь те случаи, когда полное обследование всей оси, за исключением интервала 𝑥0±𝑏, показывает, что нигде нет ни одной частицы, т.е. исключены все траектории, проходящие за пределами интервала 𝑥0±𝑏. Схема эксперимента приведена на фиг. 3.3. Амплитуду теперь можно написать в виде

ψ(𝑥)=

𝑏

-𝑏

𝐾(𝑥+𝑥

0

,𝑇+τ;𝑥

0

+𝑦,𝑇)

𝐾(𝑥

0

+𝑦,𝑇;0,0)𝑑𝑦.

(3.19)

Это выражение записано в соответствии с правилом сложения амплитуд для последовательных во времени событий. Событие первое — частица движется от начала координат до щели. Событие второе — дальнейшее движение частицы от щели до точки 𝑥. Щель имеет конечную ширину, и прохождение через каждую её точку связано с различными альтернативными возможностями; поэтому мы должны интегрировать по всей ширине щели. Частицы, которые минуют эту щель, выбывают из эксперимента, и их амплитуды в сумму не войдут. Все частицы, которые проходят через щель, движутся как свободные, и соответствующие им ядра задаются выражением (3.3). Амплитуда вероятности имеет, таким образом, вид

ψ(𝑥)=

𝑏

-𝑏

2π𝑖ℏτ

𝑚

⎫-½

exp

𝑖𝑚(𝑥-𝑦)²

2ℏτ

2π𝑖ℏ𝑇

𝑚

⎫-½

×

×

exp

𝑖𝑚(𝑥0+𝑦)²

2ℏ𝑇

𝑑𝑦.

(3.20)

Этот интеграл можно выразить через интегралы Френеля. В таком представлении уже содержатся физические результаты (которые мы обсудим ниже), но они не наглядны из-за математической сложности интегралов Френеля. Чтобы не затемнять математикой физический смысл результатов, мы получим другую, но аналогичную формулу, которая приведёт нас к более простым математическим выражениям.

Гауссова щель. Введём в подынтегральное выражение в качестве вспомогательного множителя функцию 𝐺(𝑦). Если положить эту функцию равной единице в интервале -𝑏≤𝑦≤+𝑏 и равной нулю всюду вне его, то пределы интегрирования можно раздвинуть до бесконечности без изменения результата. Тогда

ψ(𝑥)=

-∞

𝑚𝐺(𝑦)

2π𝑖ℏ√τ𝑇

exp

𝑖𝑚

2ℏ

(𝑥-𝑦)²

τ

+

(𝑥0-𝑦)²

𝑇

𝑑𝑦,

(3.21)

где

𝐺(𝑦)=

1 для -𝑏≤𝑦≤𝑏,

0 для |𝑦|>𝑏.

Допустим теперь, что в качестве 𝐺(𝑦) взята функция Гаусса

𝐺(𝑦)=𝑒

-𝑦²/2𝑏²

.

(3.22)

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука