Читаем Квантовая механика и интегралы по траекториям полностью

Частица выходит из точки 𝑎 и двигается как свободная до точки 𝑐. Здесь на неё действует потенциал 𝑉𝑐=𝑉[𝑥(𝑠),𝑠], происходит рассеяние. После этого частица движется как свободная до точки 𝑏. Амплитуда, описывающая такое движение, даётся выражением (6.10). Если эту амплитуду проинтегрировать по всем возможным положениям точки 𝑐, то получим член первого порядка теории возмущений.

Основываясь на соображениях, аналогичных тем, которые мы использовали при выводе соотношения (2.31), разделим каждую траекторию на две части: часть, которая относится к моментам времени, предшествовавшим моменту 𝑡=𝑠, и часть, которая соответствует более позднему времени.

Для конкретности предположим, что каждая траектория проходит через точку 𝑥𝑐 именно в этот момент времени 𝑡=𝑠. Далее мы проинтегрируем по всем значениям 𝑥𝑐. Если точку 𝑥𝑐(𝑠) обозначить через 𝑐 (т.е. положить 𝑠=𝑡𝑐), то сумму по всем таким траекториям можно записать как 𝐾0(𝑏,𝑐)𝐾0(𝑐,𝑎). Это означает, что функционал 𝐹(𝑠)=𝐹(𝑡𝑐) можно представить в виде


𝐹(𝑡

𝑐

)

=

-∞

𝐾

0

(𝑏,𝑐)

𝑉(𝑥

𝑐

,𝑡

𝑐

)

𝐾

0

(𝑐,𝑎)

𝑑𝑥

𝑐

.


(6.10)


Подстановка этого выражения в соотношение (6.8) даёт


𝐾

(1)

(𝑏,𝑎)

=-

𝑖


𝑡𝑏

𝑡𝑎


-∞

𝐾

0

(𝑏,𝑐)

𝑉(𝑐)

𝐾

0

(𝑐,𝑎)

𝑑𝑥

𝑐

𝑑𝑡

𝑐

,


(6.11)


где 𝑉(𝑐)=𝑉(𝑥𝑐,𝑡𝑐).

Пределы интегрирования по 𝑥 здесь положены равными +∞. В практических задачах эти пределы обычно определяются видом потенциала, который в большинстве случаев спадает до нуля при очень больших значениях 𝑥, или свойствами применённых установок, которые ограничивают область изменения 𝑥.

Интерпретация членов ряда. Чтобы лучше понять физический смысл очень важного и полезного соотношения (6.11), мы специально остановимся на его интерпретации. Назовём процесс взаимодействия между потенциальным полем и частицей рассеянием; так, мы будем говорить, что частица рассеивается на потенциале и что амплитуда такого рассеяния на единицу объёма и единицу времени равна -(𝑖/ℏ)𝑉.

Учитывая это определение, мы можем интерпретировать ядро 𝐾𝑉 следующим образом. Это ядро представляет собой, очевидно, сумму, взятую по всем альтернативным путям, по которым частица может попасть из точки 𝑎 в точку 𝑏. Эти возможности следующие:


1) частица может вообще не рассеяться

𝐾

(0)

(𝑏,𝑎)

,


2) частица может рассеяться один раз

𝐾

(1)

(𝑏,𝑎)

,


3) частица может рассеяться дважды

𝐾

(2)

(𝑏,𝑎)

и т. д.


В соответствии с такой интерпретацией на фиг. 6.2 изображены различные траектории частицы.

Фиг. 6.2. Различные случаи рассеяния.

В случае 1 частица под действием потенциала 𝑉 движется от точки 𝑎 до точки 𝑏, не рассеиваясь. Такое движение описывается амплитудой 𝐾(0)(𝑏,𝑎). В случае 2 частица в своём движении под действием потенциала 𝑉 испытывает один акт рассеяния в точке 𝑐. Этому соответствует амплитуда 𝐾(1)(𝑏,𝑎). В случае 3 частица рассеивается дважды [амплитуда 𝐾(2)(𝑏,𝑎)], а в случае 4 — 𝑛 раз, причём последнее рассеяние происходит в точке 𝑐. Полная амплитуда, описывающая движение частицы из точки 𝑎 в точку 𝑏 при любом числе рассеяний, является суммой 𝐾0+𝐾(1)+𝐾(2)+…+𝐾(𝑛)+….

Заметим, что каждая из перечисленных выше альтернатив в свою очередь является суммой альтернатив 1). Рассмотрим, например, ядро 𝐾(1)(𝑏,𝑎), описывающее однократное рассеяние. Этому ядру соответствует, в частности, следующая альтернативная траектория: частица начинает двигаться из точки 𝑎, движется свободно до точки 𝑥𝑐(𝑡𝑐=𝑐), где она рассеивается на потенциале 𝑉(𝑐), после чего снова движется как свободная частица из точки 𝑐 до конечной точки 𝑏. Амплитуда, соответствующая такой траетории, равна


𝐾

(0)

(𝑏,𝑐)

-

𝑖

𝑉(𝑐)

𝑑𝑥

𝑐

𝑑𝑡

𝑐

𝐾

(0)

(𝑐,𝑎)

.


(6.12)


1) Поскольку даже однократное рассеяние может происходить в различных точках 𝐶, суммирование по всем альтернативам является совершенно необходимым.— Прим. перев.

(Следует напомнить, что, согласно используемой нами договорённости, можно проследить за движением частицы, читая эту формулу в обратном порядке, т.е. справа налево.)

Структура амплитуды (6.12) согласуется с правилом, сформулированным в § 5 гл. 2, а именно амплитуды вероятности последовательных во времени событий перемножаются. В соответствии с равенством (6.11) полное выражение для ядра 𝐾(1) получается сложением всех таких альтернатив, т.е. интегрированием по переменным 𝑥𝑐 и 𝑡𝑐.

С помощью этих рассуждений мы можем сразу написать ядро 𝐾(2) для двухкратного рассеяния в виде


𝐾

(2)

(𝑏,𝑎)

=

-

𝑖


⎫²

∫∫

𝐾

(0)

(𝑏,𝑐)

𝑉(𝑐)

𝐾

(0)

(𝑐,𝑑)

×


×

𝑉(𝑑)

𝐾

(0)

(𝑑,𝑎)

𝑑τ

𝑐

𝑑τ

𝑑

,


(6.13)


Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное