Читаем Квантовая механика и интегралы по траекториям полностью

Такие системы колеблются, переходя из одного состояния в другое, и обратно. Отсюда можно вывести некоторые дополнительные следствия. Предположим, что взмущение действует чрезвычайно длительное время, так что 𝑉𝑚𝑛𝑇/ℏ ≫ 1. Тогда, рассматривая систему в произвольный момент времени 𝑇 (который до некоторой степени является неопределённым), найдём, что вероятности обнаружить систему в первом или во втором состояниях в среднем равны друг другу. Другими словами, если на систему с двумя состояниями, энергии которых в точности равны друг другу, очень долгое время действует какое-то слабое возмущение, то оба эти состояния становятся равновероятными. Этот вывод окажется нам полезен, когда в гл. 10 мы будем рассматривать вопросы статистической механики.

Особенно важен случай, когда допустимые значения энергии конечного состояния 𝐸𝑚 не являются дискретными, а лежат непрерывно или по крайней мере расположены чрезвычайно близко друг к другу. Пусть ρ(𝐸)𝑑𝐸 — число уровней или состояний в интервале энергий от 𝐸 до 𝐸+𝑑𝐸. Тогда можно поставить вопрос об определении вероятности перехода в некоторое состояние этого непрерывного спектра. Прежде всего мы видим, что весьма маловероятен переход в любое состояние, для которого разность энергий 𝐸𝑛-𝐸𝑚 велика; более вероятно, что конечное состояние будет одним из тех, которые расположены вблизи начальной энергии 𝐸𝑛 (в пределах ±𝑉𝑚𝑛). Полная вероятность перехода в некоторое состояние


𝑚=1

𝑃(𝑛→𝑚)

=

 

𝑚=1

|𝑉

𝑚𝑛

4 sin²[(𝐸𝑚-𝐸𝑛)𝑇/2ℏ]

(𝐸𝑚-𝐸𝑛


𝐸𝑚

 

|𝑉

𝑚𝑛

4 sin²[(𝐸𝑚-𝐸𝑛)𝑇/2ℏ]

(𝐸𝑚-𝐸𝑛

ρ(𝐸

𝑚

)

𝑑𝐸

𝑛

.


(6.83)


Величина {4 sin²[(𝐸𝑚-𝐸𝑛)𝑇/2ℏ]/(𝐸𝑚-𝐸𝑛)²} очень велика, если 𝐸𝑚≈𝐸𝑛 и имеет наибольшее значение, равное 𝑇²/ℏ². Эта величина значительно уменьшается, когда энергии 𝐸𝑚 и 𝐸𝑛 существенно различны (т.е. 𝐸𝑚-𝐸𝑛 ≥ ℏ/𝑇), как это показано на фиг. 6.13. Таким образом, интеграл по переменной 𝐸𝑚 почти целиком определяется значениями 𝐸𝑚, лежащими в окрестности точки 𝐸𝑛.

Фиг. 6.13. Поведение подынтегральной функции.

Разность энергий 𝐸𝑚-𝐸𝑛 выражена переменной 𝑥. Когда обе эти энергии становятся приблизительно равными (другими словами, когда 𝑥 очень мало), функция sin²𝑥/𝑥² достигает своей максимальной величины. Для бо'льших значений разности энергий эта функция становится очень малой. Поэтому во всех выражениях, в которые входит эта функция, основная часть вклада привносится центральной областью, т.е. областью, где энергии 𝐸𝑚 и 𝐸𝑛 приблизительно равны друг другу.

Если матричный элемент 𝑉𝑚𝑛 изменяется не очень быстро, так что мы можем заменить его некоторым средним значением, и если, кроме того, плотность уровней ρ(𝐸𝑚) также изменяется медленно, то интеграл (6.83) можно достаточно точно представить выражением


4|𝑉

𝑚𝑛

ρ(𝐸

𝑛

)

𝐸𝑚

 


sin²[(𝐸𝑚-𝐸𝑛)𝑇/2ℏ]

(𝐸𝑚-𝐸𝑛

𝑑𝐸

𝑛

.


(6.84)


Так как


-∞

[(sin²𝑥)/𝑥²]𝑑𝑥

=π,


то интеграл (6.84) равен π𝑇/2ℏ и в результате получаем, что вероятность перехода в некоторое состояние непрерывного спектра выразится в виде


𝑃(𝑛→𝑚)

=

|𝑉

𝑚𝑛

ρ(𝐸𝑛)𝑇

;


(6.85)


при этом энергия в конечном состоянии останется той же, что и в начальном. Отсюда вероятность перехода в единицу времени мы можем записать как


𝑑𝑃(𝑛→𝑚)

𝑑𝑡

=

|𝑀

𝑛→𝑚

ρ(𝐸)

,


(6.86)


где величина 𝑀𝑛→𝑚 называется матричным элементом перехода, а ρ(𝐸) — плотность уровней в конечном состоянии. В нашем случае матричный элемент 𝑀𝑛→𝑚 совпадает с 𝑉𝑚𝑛 если же перейти к более высоким порядкам разложения по λ𝑚𝑛, то вид этого элемента становится гораздо сложнее.

Выражение (6.86) можно записать иначе, а именно как вероятность перехода за единицу времени из состояния 𝑛 в некоторое заданное состояние 𝑚.


𝑑𝑃(𝑛→𝑚)

𝑑𝑡

=

2πδ(𝐸𝑛-𝐸𝑚)|𝑀𝑛→𝑚


(6.87)


Тогда, после того как мы просуммируем по всем состояниям 𝑚, останутся лишь те, для которых 𝐸𝑛=𝐸𝑚. Сделав замену


 

𝑚

𝑑𝐸

𝑚

ρ(𝐸

𝑚

)

,


получим в результате формулу (6.86).

Выражение (6.86) мы можем проиллюстрировать на примере (который ранее был рассмотрен с несколько другой точки зрения) рассеяния электрона в потенциальном поле (см. § 4). Предположим, что на свободную частицу действует центральная сила с потенциалом 𝑉(𝐫) и мы хотим изучить рассеяние этой частицы при переходе из некоторого начального состояния с определённым значением импульса в конечное состояние с другим значением импульса, имеющим новое направление. Будем считать, что начальное состояние 𝑛 описывается плоской волной с импульсом 𝐩1 так что волновая функция φ𝑛 имеет вид exp (𝑖𝐩1⋅𝐫/ℏ) (функция нормирована таким образом, чтобы интеграл от квадрата модуля |φ𝑛|² по единичному объёму был равен единице). Допустим, что конечное состояние также описывается плоской волной с импульсом 𝐩2 и, следовательно, его волновая функция φ𝑚 есть exp (𝑖𝐩2⋅𝐫/ℏ). Тогда для матричного элемента 𝑉𝑚𝑛 будем иметь


𝑉

𝑚𝑛

=

𝐫

 

𝑒

-(𝑖/ℏ)𝐩2⋅𝐫

𝑉(𝐫)

𝑒

(𝑖/ℏ)𝐩1⋅𝐫

𝑑³𝐫

=

𝑣(𝐩)

,


(6.88)


где 𝐩=𝐩2-𝐩1. В процессе такого рассеяния энергия будет сохраняться, поэтому 𝐩²2/2𝑚=𝐩²1/2𝑚. Это означает, что абсолютные значения импульсов 𝐩1 и 𝐩2 равны. Положим их равными 𝑝, т.е.


|𝐩

1

|

=

|𝐩

2

|

=

𝑝.


Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука