Читаем Квантовая механика и интегралы по траекториям полностью

Переходы первого порядка. Рассмотрим прежде всего случай, когда конечное состояние системы 𝑚 отличается от её начального состояния 𝑛, и ограничимся только первым борновским приближением, т.е. вторым членом ряда (6.69). Такой подход оправдан для малых значений потенциала 𝑉. Амплитуда перехода из состояния 𝑚 в состояние 𝑛


λ

(1)

𝑚𝑛

=-

𝑖


𝑡2

𝑡1

𝑒

(𝑖/ℏ)(𝐸𝑛-𝐸𝑚)𝑡

𝑉

𝑚𝑛

(𝑡)

𝑑𝑡

𝑒

-(𝑖/ℏ)(𝐸𝑛𝑡2-𝐸𝑚𝑡1)

.


(6.77)


Это очень важный частный случай нестационарной теории возмущений. В качестве первого примера предположим, что 𝑉(𝑥,𝑡)=𝑉(𝑥), т.е. что потенциал не содержит явной зависимости от времени. Если мы рассмотрим теперь интервал от 𝑡=0 до 𝑡=𝑇, то (поскольку матричный элемент 𝑉𝑚𝑛 не зависит от времени) получим


λ

(1)

𝑚𝑛

exp


𝑖

(𝐸

𝑛

𝑡

2

-𝐸

𝑚

𝑡

1

)

=


=-

𝑖

𝑉

𝑚𝑛

𝑇

0



𝑖

(𝐸

𝑛

-𝐸

𝑚

)𝑡

𝑑𝑡

=

𝑉

𝑚𝑛

exp[(𝑖/ℏ)(𝐸𝑛-𝐸𝑚)]-1

𝐸𝑚-𝐸𝑛

.


(6.78)


Следовательно, вероятность перехода за интервал времени, равный 𝑇,


𝑃(𝑛→𝑚)

=

(1)

𝑚𝑛

=

|𝑉

𝑚𝑛

4sin²

(𝐸𝑛-𝐸𝑚)𝑇

2ℏ


(𝐸

𝑛

-𝐸

𝑚

)

-2

.


(6.79)


Мы видим, что по крайней мере для большого интервала 𝑇 эта вероятность является быстро осциллирующей функцией от разности энергий 𝐸𝑛-𝐸𝑚. Если значения энергии 𝐸𝑛 и 𝐸𝑚 достаточно сильно отличаются друг от друга, т.е. если |𝑉𝑚𝑛|≪|𝐸𝑚-𝐸𝑛|, то вероятность 𝑃(𝑛→𝑚) будет очень мала. Это означает, что чрезвычайно мала вероятность найти значительное различие в энергиях начального и конечного состояний системы, подверженной действию очень слабого стационарного возмущения. Можно спросить, каким образом вообще малое возмущение 𝑉𝑚𝑛 может привести к значительному изменению энергии 𝐸𝑚-𝐸𝑛? Ответ таков: мы рассматриваем возмущение 𝑉, внезапно возникающее в некоторый момент времени 𝑡=0, поэтому точное указание этого момента уже само по себе в силу принципа неопределённости допускает большую неопределённость значения энергии [см. формулу (5.19) и связанное с ней обсуждение].

Задача 6.20. Предположим, что потенциал 𝑉 сначала плавно возрастает, а затем плавно уменьшается. Пусть, например, 𝑉(𝑥,𝑡)=𝑉(𝑥)𝑓(𝑡) — гладкая функция, определяемая условиями


𝑓(𝑡)

=


1

2𝑒γ𝑡

, если 𝑡=0,


1-

1

2𝑒γ𝑡

, если 0 < 𝑡 <

𝑇

2

,


1-

1

2𝑒-γ(𝑇-1)

, если

𝑇

2

< 𝑡 < 𝑇,


1

2𝑒-γ(𝑡-𝑇)

, если 𝑡 > 𝑇


(6.80)


(фиг. 6.12). Допустим далее, что фактор 1/γ, определяющий временной рост функции 𝑓(𝑡), намного меньше величины 𝑇 (1/γ ≪ 𝑇).

Фиг. 6.12. Зависимость от времени потенциала, обусловливающего переход из состояния 𝑚 в состояние 𝑛.

Как только зависимость от времени 𝑓(𝑡) становится более слабой, т.е. разрывы остаются лишь в производных существенно более высоких порядков, вероятность перехода уменьшается.

Кроме того, предположим, что γ ≪ (𝐸𝑚-𝐸𝑛). Покажите что величина вероятности (6.79) уменьшается в этом случае в ξ раз, где ξ={γ²/[γ²+(𝐸𝑚-𝐸𝑛)]}². При определении функции 𝑓(𝑡) в виде (6.80) мы имеем ещё разрывы второй производной по времени; более гладкие функции приводят к ещё большему уменьшению величины 𝑃(𝑛→𝑚).

Может случиться, что значения энергии 𝐸𝑚 и 𝐸𝑛 будут в точности равны друг другу; в этом случае вероятность перехода 𝑃(𝑛→𝑚) = |𝑉𝑚𝑛|² 𝑇²/ℏ² и возрастает пропорционально квадрату времени. Это означает, что понятие вероятности перехода на единицу времени в данном случае не имеет смысла. Указанная выше формула применима только для достаточно малых значений 𝑇, таких, что 𝑉𝑚𝑛𝑇 ≪ ℏ. Если у нас имеются только два состояния с одинаковой энергией, то оказывается, что вероятность обнаружить систему в первом из этих состояний равна cos²(|𝑉𝑚𝑛|𝑇/ℏ), а вероятность её обнаружения во втором состоянии равна sin²(|𝑉𝑚𝑛|𝑇/ℏ), так что наша формула является всего лишь первым приближением к этим выражениям.

Задача 6.21. Рассмотрим такой частный случай, когда возмущающий потенциал 𝑉 не имеет никаких матричных элементов, кроме тех, что описывают переходы между уровнями 1 и 2; будем считать, что эти уровни вырождены, т.е. энергия 𝐸1=𝐸2. Пусть 𝑉12=𝑉21=𝑣, a 𝑉11, 𝑉22 и все другие матричные элементы 𝑉𝑚𝑛 равны нулю. Покажите, что


λ

11

=

1-

𝑣²𝑇²

2ℏ²

+

𝑣4𝑇4

24ℏ4

-…

=

cos

𝑣𝑇

,


(6.81)


λ

12

=

-𝑖

𝑣𝑇

+𝑖

𝑣3𝑇3

6ℏ3

-…

=

-𝑖 sin

𝑣𝑇

.


(6.82)


Задача 6.22. В задаче 6.21 мы имели равенство 𝑉12=𝑉21, поэтому матричный элемент 𝑉12 является действительной величиной. Покажите, что и в том случае, когда 𝑉12 — комплексная величина, физические результаты остаются теми же самыми (при этом следует положить 𝑣=|𝑉12|).

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука