Таким образом (хотя детям это было, конечно, всё равно), задача стала проще: каждый мог заботиться только об увеличении собственного числа, без оглядки на остальных. Впрочем, это не так уж очевидно: стратегия должна зависеть от количества очков. Если, например, числа 1, 2 и 3 заменить на 0, 0 и 1000, то игра сведётся к предыдущей. В общем, «задача для взрослых» пока остаётся открытой.
После девяти туров у меня оказалось 21 очко, у Димы — 18, у Жени — 17. Это означает, что кто-то ошибся в подсчёте, так как сумма должна была равняться 54. Но я этого почему-то не заметил. К тому же мальчики чересчур расшалились, так что я торопился перейти к следующей игре.
Картинки с многогранниками.
Рассматривали картинки из книги Веннинджера[34], читали названия фигур. Конечно, по сравнению со звёздчатыми фигурами обычные правильные многогранники никакого впечатления на ребят не произвели.Задание 4.
Сначала я показываю ребятам карточки; мы устанавливаем, что на двух сторонах карточки всегда написаны соседние числа, и что самое большое число — 4.
После этого все карточки перемешиваются (и стороны тоже) и кладутся в вертикальную коробку. Мальчики садятся друг напротив друга. Я по очереди вынимаю карточки и показываю их одной стороной Жене, а другой Диме. Каждый из них должен
1-я:
мальчики плохо понимают задачу, называют не чужое число, а своё.2-я:
условие понято. Тот, кто видит у себя 1 или 4, называет противоположное число правильно; но тот, кто видит 2 или 3, пытается угадывать наобум; я велю им говорить «не знаю».3-я:
тот, кто видит 2 (соотв. 3), начинает понимать, что если противник твёрдо и сразу называет его число, то у него 1 (соотв. 4). Пока ещё часты ошибки; я ввожу новое правило: если кто-то ошибся, карта не засчитывается. Число ошибок уменьшается.4-я:
тот, кто видит 2 (соотв. 3), начинает понимать, что если противник говорит «не знаю», значит, у него 3 (соотв. 2). Первый догадался до этого Дима.5-я:
происходит очень смешная сцена. Женя видит 2, а Дима 3. Каждый из них должен был бы сказать «не знаю»; но по опыту предыдущих игр они уже убедились в том, что если поторопиться и сказать первым «не знаю», то противник сразу угадает твоё число, в то время как если бы ты потерпел, пока о н скажет «не знаю», то сам бы угадал его число. Поэтому оба выжидают: каждый желает быть вторым, а не первым. В этот момент вдруг Дима соображает, что если бы у Жени было 4, он бы уже давно всё угадал. А он молчит, и уже давно; значит, выжидает. Тогда Дима твёрдо заявляет: 2! А Женя, ошибочно истолковав его уверенность, говорит: 1! Наступает долгий смех и прояснение ситуации. Дима сам всё объясняет:— Я вижу, что он (т. е. Женя) сомневается и всё на папу поглядывает…
6-я:
у Жени 1, у Димы 2. Женя неожиданно применяетМне вообще-то казалось, что Женя колеблется как-то неестественно. Но если бы я сказал 1, то могло бы получиться, что в прошлый раз я всё сделал правильно, а теперь опять ошибся — это неприятно. Наоборот, когда сделал так же, как и в прошлый раз, только теперь это не сработало, то всё вполне объяснимо. —
Я понимаю, что теперь уже ребята поняли всю задачу до конца, и пытаюсь остановить игру. Мальчики требуют ещё.
После конца занятия, уже повозившись со змеёй Рубика, они садятся сами играть в эту игру ещё раз. В общем, я этой задачей очень доволен и считаю её одной из лучших своих находок. Кроме того, я очень рад, что удалось-таки овеществить идею рефлексии (хотя идея гораздо богаче, и наверняка из неё можно извлечь ещё множество задач). Но один чисто технический недостаток у этой задачи есть: в неё можно играть только вдвоём.
Змея Рубика.
Я показал её Наташе и Жене и сложил из неё несколько фигурок, в том числе фигуру № 86 из книги Веннинджера («малый ромбогексаэдр»).После этого, как я уже говорил, дети уселись сами играть в игру с карточками.