О понятии множества.
Мы выясняли, каким словом называется много коров (стадо), много птиц (стая), много цветов (букет), много спортсменов (команда) и т. д. Потом я объяснил, что в математике, чтобы не вводить так много разных слов, говорят всегда одинаково: множество. Поэтому нельзя сказать «букет коров» или «стая цветов», но можно сказать «множество коров» и «множество цветов».Задание 1.
Мальчики предлагали самые фантастические объяснения: что это другие дети; что сестра — дочка не той же мамы, а мачехи; что брат мало ел и поэтому медленнее рос (Дима спрашивал: «Он старше по росту или по возрасту?»). Когда я все эти объяснения отмёл, они твёрдо заявили, что такого быть не может.
Дальнейшее показало (см. задание 4), что они не знают, что значит «в два раза старше» и «в три раза старше». В частности, Петя, придя домой, рассказал родителям эту задачу так:
— Брат старше сестры на два года; а год назад он был старше её на три года…
Задание 2.
В итоге Дима был казнён 3 раза, Петя тоже 3, а Женя — 2 раза. Петя с самого начала избрал наилучшую стратегию: в одну коробку клал один белый шар, а в другую — 3 белых и 4 чёрных. При этом вероятность спастись равна
(1/2)∙1 + (1/2)∙(3/7) = 5/7
а вероятность гибели, соответственно, 2/7. Однако результат его после первых двух испытаний был 1:1, хуже, чем у Жени, который играл без всякого особого смысла, но оба первых раза выиграл. Дима же с самого начала избрал наихудшую возможную стратегию: клал отдельно один чёрный шар (при этом, наоборот, вероятность
Петя даже воскликнул один раз:
— Ой, Димка, что ты себе сделал!
Тем не менее, и его результат, как и у Пети, был 1:1. Отчасти это, как и дальнейшие результаты, объяснялось ещё и тем, что Женя, будучи палачом, подглядывал в коробки перед тем, как вытащить шар.
Логику Димы можно себе представить примерно так: авось повезёт, и коробку с чёрным шаром не выберут; а тогда во второй коробке будет зато на один чёрный шар меньше (ну, если не повезёт и выберут первую коробку, так уж ничего не поделаешь; в конце концов, ведь в любом случае может не повезти). Следуя этой логике дальше, он потом немного улучшил свою стратегию: стал изолировать в отдельной коробке сначала два чёрных шара, а затем все четыре; таким образом, он пришёл от наихудшей стратегии к средней, дающей равные шансы на выигрыш и проигрыш. Характерно, однако, что под его влиянием Петя ухудшил свою стратегию и тоже свёл её к средней. Женя же применил третью схему. Он заметил (по его словам), что коробки — разного цвета, одна сиреневая и одна синяя, и все всегда выбирают сиреневую коробку. Вот он и стал класть в неё по 2 белых шара.
Вообще, эта задача (точнее, не сама задача, а её материальное воплощение, данное мной) обладает двумя недостатками. Во-первых, это «субъективизм» в выборе коробки (Женя заметил, что чаще выбирают сиреневую; я сам заметил, что чаще выбирают левую). Надо бы сделать процедуру выбора более объективной, например, выбирать коробку подбрасыванием монеты. Во-вторых, шарики, положенные в коробку, детям не видны, и поэтому они не могут «следить за развитием событий». Надо бы обдумать эту задачу ещё раз.
Задание 3.
Надо сказать, что Дима сам демонстрировал этот фокус, и притом вполне успешно: задавал довольно хитроумные последовательности действий и при этом не ошибался. Он всё порывался поскорее раскрыть секрет, а когда я ему не дал, он показал последний свой фокус так: «Задумай число, прибавь 1, отними задуманное; получилось 1». Но, кажется, его никто не понял.