Читаем Малыши и математика. Домашний кружок для дошкольников полностью

Он, как я и ожидал, поставил на этот раз наилучшую комбинацию [1, 0] + [4,5] — и выиграл со счётом 9:1. Женя сказал, что он хочет оставить ту же комбинацию — и тоже выиграл, с тем же счётом 9:1. Наконец, и Петя оставил ту же комбинацию, и тоже выиграл, хотя и с меньшим счётом 6:4. После этого мы подсчитали и суммарную статистику 24:6.

Меня эта операция удивила: только что было соревнование, а теперь вдруг все результаты складываются. — Дима.

Заметим, что вероятность выигрыша при этой комбинации равна

(1/2)∙1 + (1/2)∙(4/9) = 1/2 + 2/9 = 13/18 < 24/30 = 4/5

так что судьба нам ещё слегка благоприятствовала, сделав правильность решения более наглядной.

Как это порой бывало и раньше, кое-что прояснилось для меня после окончания занятия: мальчики долго спорили о том, как лучше расставить фишки внутри одного ряда! Так что я был не совсем справедлив, а правильнее было бы сказать — совсем несправедлив, и все эти однообразные [3, 2] + [2, 3], возможно, вовсе не казались им такими уж одинаковыми. Может быть, они даже внимательно наблюдали (как игрок в рулетку), какие цифры выпадают чаще, и пытались ставить белые шарики на эти места. Если это так, то во время занятия всё это, к сожалению, прошло полностью мимо меня. Я был совершенно ослеплён своим высшим знанием — «самоочевидностью» того, что шансы не зависят от места. По отношению к феноменам Пиаже литература заранее подготовила меня к тому, чего следует ожидать, т. е. к нормальным реакциям нормальных детей. А вот по поводу восприятия случайности я ничего такого не читал. В результате я мгновенно превратился в стандартного «поучателя», который «знает как надо» и поэтому требует от детей одного лишь подчинения своим идеям.

Геометрический фокус. Предыдущее задание заняло почти весь час, так что у меня осталось всего минут пять. Времени на ещё одну задачу не было; поэтому за оставшееся время я только успел показать детям один простенький фокус. На их глазах нарисовал на листе бумаги несколько параллельных полосок, затем разрезал листок по линии, соединяющей противоположные концы противоположных полосок. После этого одна половинка сдвигается относительно другой (рис. 113) — и количество полосок оказывается на одну меньше!



Рис. 113.Было 8 вертикальных полосок, а стало 7. Куда девалась восьмая?


Однако дети легко разгадали этот фокус.

На этом занятие закончилось.

— А картинки? — спросил Петя.

Однако картинки у меня были подобраны к той задаче, которую я дать не успел. Я это объяснил и обещал показать их в следующий раз.


Занятие 65. Гомеоморфизм

21 марта 1983 года (понедельник). 1610-1710 (1 час). Дима, Петя, Женя.

Задание 1. Разрезные шансы. Мы вернулись к задаче со смертной казнью и проделали что-то вроде «подсчёта шансов» на выигрыш. Конечно, не было никакой надежды на сложение дробей, а тем более на использование формулы полной вероятности. Однако я убедился в том, что интуитивно дети эту формулу понимают. Я поступил следующим образом. Заготовил множество одинаковых полосок бумаги — шириной 1,5 см и длиной 40 см. Каждая полоска была разделена линией ровно пополам, на 20 и 20 см: это означало, что с равными шансами можно попасть в левую и в правую коробку. Далее каждая половина была тоже разделена на равные части, но на разное количество частей — например, левая на 2 равные части, а правая на 8, или левая на 3, а правая на 7 и т. д.; в том числе были и такие, что левая сторона вообще не поделена, а правая поделена на 9 частей.

Затем ребята по очереди расставляли каким-нибудь образом шарики, и мы «вычисляли» шансы на спасение и гибель: разрезали сначала полоску пополам, а затем каждую часть разрезали в пропорции белых шариков к чёрным в соответствующей коробке, после чего клали «белые» (выигрышные) куски полоски налево, а «чёрные» — направо. В результате было наглядно видно, какое решение лучше, а какое хуже — просто сравнением длин шансов на выигрыш.

Надо сказать, что всё-таки две идеи остались слегка туманными. Во-первых, Петя ещё не усвоил различие между законом сохранения числа и законом сохранения длины (когда-то мы этим специально занимались — см. задачу про короткие и длинные дорожки, занятие № 51; тогда эту разницу понимал один Женя). Петя спорил со мной, что «здесь 5 шансов, и здесь тоже 5», показывая на полоски одинакового количества, но разной длины. Я попытался объяснить, в чём дело, но боюсь, что моё объяснение повисло воздухе.

Перейти на страницу:

Похожие книги

Рассказы о металлах
Рассказы о металлах

Научно-популярная книга об истории открытия, свойствах и применении важнейших металлов и сплавов.Много веков металлы верно служат человеку, помогая ему строить и созидать, покорять стихию, овладевать тайнами природы, создавать замечательные машины и механизмы.Богат и интересен мир металлов. Среди них встречаются старые друзья человека: медь, железо, свинец, золото, серебро, олово, ртуть. Эта дружба насчитывает уже тысячи лет. Но есть и такие металлы, знакомство с которыми состоялось лишь в последние десятилетия. О судьбах важнейших металлов, об их "планах на будущее" рассказывает эта книга.Первое издание книги "Рассказы о металлах" (1970 г.) отмечено дипломом конкурса Московской организации Союза журналистов СССР на лучшую работу года по научной журналистике и дипломом ежегодного конкурса Всесоюзного общества "Знание" на лучшие произведения научно-популярной литературы. Четвертое издание книги переработано и дополнено новыми материалами.Предназначена для самого широкого круга читателей: учащихся, студентов, преподавателей, специалистов — всех интересующихся историей и развитием металлургии, химии, материаловедения.Венецкий С.И. Рассказы о металлах. — 4-е изд., перераб. и доп. — М.: Металлургия, 1985. — 240 с, ил.Иллюстрации Алексея Владимировича Колли.

Сергей Иосифович Венецкий

Детская образовательная литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Металлургия / Научпоп / Книги Для Детей
Томек в стране кенгуру
Томек в стране кенгуру

Альфред Шклярский принадлежит к числу популярнейших польских, писателей, пишущих для молодежи. Польскому читателю особенно полюбился, цикл приключенческих романов Шклярского. Цикл объединен образами главных героев, путешествующих по разным экзотическим странам земного шара. Несмотря на общность героев, каждый роман представляет из себя отдельную книгу, содержание которой определено путешествиями и приключениями Томека Вильмовского, юного героя романов, и его взрослых товарищей.Кроме достоинств, присущих вообще книгам приключенческого характера, романы Шклярского отличаются большими ценностями воспитательного и познавательного порядка. Фабула романов построена с учетом новейших научных достижений педагогики. Романы учат молодых читателей самостоятельности, воспитывают у них твердость характера и благородство.Первое и второе издания серии приключений Томека Вильмовского разошлись очень быстро и пользуются большим успехом у молодых советских читателей, доказательством чему служат письма полученные издательством со всех концов Советского Союза. Мы надеемся, что и третье издание будет встречено с такой же симпатией, поэтому с удовольствием отдаем эту серию в руки молодых друзей.

Альфред Шклярский

Приключения / Детская образовательная литература / Путешествия и география / Детские приключения / Книги Для Детей