Читаем Отличная квантовая механика полностью

Теперь, воспользовавшись результатами упр. 3.60, чтобы выразить наблюдаемые координаты и импульса через операторы рождения и уничтожения и наоборот, находим

и


Решение для упражнения 3.107. Здесь мы вновь следуем логике решения для упр. 3.100. Запишем:

где фиктивный гамильтониан дается уравнением (3.170). Его можно преобразовать:

Операторы координаты и импульса эволюционируют под действием этого гамильтониана следующим образом:

Для операторов уничтожения и рождения находим

и


Решение для упражнения 3.108. Для среднеквадратичного отклонения координаты в состоянии Ŝ(r)|ψ⟩ можно записать:

Рассуждения для неопределенности импульса проводятся аналогично.


Решение для упражнения 3.109

a) Необходимо убедиться в том, что Чтобы вычислить этот интеграл, заменим переменную интегрирования на X' = Xer. Тогда dX = dX'e−r и

где мы воспользовались известной нормировкой волновой функции вакуумного состояния.

b) Из уравнения (3.171) находим 𝑓(X,t) = Xe-r = Xe−γt, так что 𝑓'(X,t) = Xe-r и 𝑓−1(X,t) = Xer. Следовательно, (3.154) принимает вид

|ψ(x,t)|2 = Xer0(erX)|2.

Это согласуется с уравнением (3.175a).


Решение для упражнения 3.110. Гамильтониан (3.170) можно записать в координатном базисе:

Подставляя в качестве ψ(X,t) правую часть уравнения (3.175а) и проводя дифференцирование, видим, что эта функция действительно является решением уравнения (Р3.106). Доказательство для волновой функции в импульсном базисе аналогично.


Решение для упражнения 3.111

a) Оператор эволюции под действием гамильтониана (3.177) есть

Записав операторы рождения и уничтожения через координату и импульс, преобразуем гамильтониан следующим образом:

b) Применив уравнение Гейзенберга к наблюдаемым координаты и импульса и вспомнив, что операторы, связанные с разными осцилляторами, коммутируют между собой, находим

Эти результаты приводят к

что эквивалентно уравнениям (3.178) и (3.179), поскольку r = γt.

Чтобы найти эволюцию операторов уничтожения, определим следующие два оператора:

Эволюцию этих операторов можно найти способом, аналогичным тому, что мы использовали для одномодового случая:

из чего следует, что

Расчет для âB(t) производится так же.

c) Как и в упр. 3.108, мы воспользуемся фактом, доказанным при введении представления Гейзенберга: математическое ожидание любого наблюдаемого Â = Â(0) в состоянии Ŝ2(r)|0,0⟩ равно матожиданию «сжатого» наблюдаемого в вакуумном состоянии |0, 0⟩. Однако, прежде чем продолжить доказательство соотношений (3.183) и (3.184), удобно определить моменты «несжатых» наблюдаемых по отношению к вакуумному состоянию. Находим:

Для сжатых наблюдаемых из (3.178) и (3.179) следует, что

где усреднение по-прежнему производится по отношению к вакуумному состоянию, потому что мы работаем в представлении Гейзенберга. Отсюда для координаты Алисы имеет место равенство

Для координаты Боба и для импульса вычисления аналогичны.


Решение для упражнения 3.112. В координатном базисе гамильтониан (3.177) становится

так что уравнение Шрёдингера (1.31) принимает вид:

где Ψsq2(XA,XB) задается уравнением (3.186a) при r = γt. Верность уравнения (Р3.113) легко подтверждается непосредственными вычислениями.

Доказательство для волновой функции в импульсном базисе аналогично.


Решение для упражнения 3.113

a) Когда Алиса наблюдает у себя конкретное значение координаты XA, состояние |Ψ⟩ схлопывается в ⟨XA|Ψ⟩ в гильбертовом пространстве Боба. Волновая функция этого состояния

ψB(XB) = ⟨XB|(⟨XA|Ψ)⟩ = ⟨XA,XB|Ψ⟩ = Ψ(XA,XB),

что равняется волновой функции первоначального двумодового сжатого вакуумного состояния. Эту волновую функцию следует, однако, интерпретировать иначе: теперь XA — конкретное значение, которое уже наблюдала Алиса, тогда как XB — это аргумент еще не измеренной волновой функции Боба. Обратите внимание, что данная волновая функция является ненормированной в гильбертовом пространстве Боба, поскольку включает в себя вероятность того, что Алиса обнаружит у себя конкретное значение XA.

Чтобы найти неопределенность координаты, перепишем эту волновую функцию как

Преобразуя это выражение далее, получаем:

В то время как первая из представленных выше экспонент является постоянным множителем (так как XA постоянно), вторая — это гауссова функция от XB шириной 1/u. Сравнив ее с гауссовой функцией в упр. 3.25, находим:

b) Решение аналогично проведенному для пункта a) и дает тот же ответ.


Решение для упражнения 3.114


Решение для упражнения 3.115

a) Раскладывая оператор (3.169) в степенной ряд до первого члена и применяя его к вакуумному состоянию, находим:

Квадрат нормы данного состояния равен ⟨ψ |ψ⟩ = 1 + r2/2, что аппроксимируется единицей в первом порядке по r.

Математические ожидания координаты и импульса в этом состоянии равны

Дисперсии же этих наблюдаемых равны соответственно

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука