Читаем Отличная квантовая механика полностью

Решение для упражнения 4.15

a) Наша цель — переписать декартовы выражения (4.20) для компонентов момента импульса в координатном базисе в сферических координатах. Для этого воспользуемся цепным правилом из дифференциального исчисления функций нескольких переменных:

Решив уравнения (4.11a), выразим сферические координаты через декартовы:

Чтобы вывести уравнения (4.24), мы должны не только продифференцировать уравнения (Р4.4), но и выразить результаты в сферических координатах. Находим:

Подставив эти производные в уравнения (Р4.3), получим искомый набор производных (4.24).

b) Уравнения (4.25) получаются путем подстановки результатов из пункта (a) в (4.20). Например:

c) Для квадратов компонентов момента импульса пользуемся (4.25) и находим:

Сложив все три выражения вместе, получаем:

Чтобы убедиться в эквивалентности этого результата уравнению (4.26), отметим, что его второе слагаемое

идентично второму слагаемому в (4.26). Кроме того, первое слагаемое в (4.26) можно переписать как

что совпадает с суммой первого и третьего слагаемых в уравнении (Р4.6).

d) Заметим, что в координатном базисе

Чтобы вычислить это выражение, перепишем (4.24) как


Решение для упражнения 4.16. Подставляя (4.27), (4.28) и (4.29) в уравнение Шрёдингера (4.23), находим в координатном базисе:

Воспользовавшись

и сократив Yλ(θ, φ) с обеих сторон, получаем уравнение (4.44).


Решение для упражнения 4.17. Предположим, что множество {λi} собственных значений невырожденно. Из упр. 4.11 мы знаем, что коммутирует и с и с [которые, согласно (4.25), являются локальными операторами в 𝕐]. В соответствии с упр. 1.36 это означает, что существует ортонормальный базис (мы его обозначим в котором оба наблюдаемых и одновременно принимают диагональный вид, а также ортонормальный базис в котором одновременно принимают диагональный вид наблюдаемые и Поэтому имеет место равенство

Невырожденность λj подразумевает по определению, что а значит, два эти базиса совпадают. Получено противоречие.


Решение для упражнения 4.18

a) Компоненты момента импульса представляют собой эрмитовы операторы, так что и Следовательно,

b) Воспользовавшись результатом упр. 4.11, находим

с) Из

находим нужное соотношение:


Решение для упражнения 4.19

a) Чтобы проверить, является ли состояние собственным состоянием и подвергнем его действию этих операторов. Поскольку коммутирует с имеет место равенство:

Иными словами, есть собственное состояние с собственным значением λ.

Чтобы произвести аналогичное вычисление для перепишем полученное в упр. 4.18 выражение для коммутатора и следующим образом:

Видим, что действие оператора на состояние эквивалентно умножению этого состояния на (μ + ℏ), так что — это собственное состояние оператора с собственным значением (μ + ℏ).

b) Подобно вышесказанному, поскольку

имеет место равенство

так что — это собственное состояние оператора с собственным значением (μ — ℏ).


Решение для упражнения 4.20. Пусть Из предыдущего упражнения мы знаем, что |ψ⟩ — собственное состояние с собственным значением ℏ(μ + ℏ), т. е. |ψ⟩ = A|λ, μ + ℏ⟩, где A — некоторая константа. Нам нужно найти A. Для этого отметим, что и вычислим:

(в последнем равенстве мы воспользовались тем, что |λμ⟩ — это собственное состояние и и Однако же

⟨ψ|ψ⟩ = |A|2⟨λ, μ + ℏ|λ, μ + ℏ⟩, = |A|2 (Р4.13)

поскольку собственные состояния оператора момента импульса нормированы. Отсюда находим где α — произвольное действительное число.

Подобным образом для понижающего оператора имеет место равенство . Тогда, с одной стороны,


Решение для упражнения 4.21. Рассмотрим оператор Состояние |λμ⟩ — его собственное состояние с собственным значением λ — μ2. Но этот оператор равен и потому неотрицателен (упр. A.87), так что все его собственные значения тоже должны быть неотрицательными (упр. A.72).


Решение для упражнения 4.22. Нам известно из упр. 4.20, что существование состояния |λμ⟩ подразумевает, через многократное применение повышающего оператора, существование цепочки состояний |λ, μ + jℏ⟩, где j — неотрицательное целое число. Но тогда в некоторой точке (μ + jℏ)2 станет больше λ, а это, как мы выяснили в упр. 4.21, невозможно. Цепочка разрывается только в том случае, если существует такое значение j (мы обозначим его j0), что Согласно уравнению (4.32), так происходит, если λ = [μ + j0ℏ][μ + (j0 + 1)ℏ].

Сходным образом, цепочка состояний, генерируемых понижающим оператором |λ, μ — kℏ⟩, разрывается только в том случае, если существует такое неотрицательное целое k0, что λ = [μ — k0ℏ][μ — (k0 + 1)ℏ]. Удовлетворение условий разрыва обеих цепочек одновременно дает нам

[μ + j0ℏ][μ + (j0 + 1)ℏ] = [μ — k0ℏ][μ — (k0 + 1)ℏ].

Обозначив μ + j0ℏ = x и μ — (k0 + 1)ℏ = y, перепишем данное уравнение как

x(x + ℏ) = y(y + ℏ).

Поскольку должно выполняться условие x > y, уравнение имеет только одно решение: y = —(x + ℏ). Это означает

μ — (k0 + 1)ℏ = —μ — (j0 + 1)ℏ

или

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука