Читаем Отличная квантовая механика полностью

Потребовав, чтобы норма |ψ⟩ равнялась единице, находим A = π–1/4.Волновая функция в импульсном базисе вычисляется аналогично.


Решение для упражнения 3.65

a) Однофотонное состояние Фока получено из вакуумного путем применения единичного оператора рождения. Воспользовавшись (3.94), выразим оператор рождения в координатном базисе как

Двухфотонное состояние Фока получается путем применения оператора рождения к однофотонному состоянию:

b) Теперь мы покажем по индукции, что уравнение (3.110) описывает волновую функцию состояния Фока |n⟩. Во-первых, применив уравнения (3.110) и (3.111) с n = 0, получим волновую функцию вакуумного состояния (3.107a). Во-вторых, предположим, что уравнение (3.110) выполняется при заданном n = k, и докажем, что оно должно выполняться и при n = k + 1. Мы можем записать соотношение рекурсии координатном базисе с использованием уравнения (Р3.69):

что согласуется с (3.110) при n = k + 1. Чтобы записать последнее равенство, мы обратили внимание, что из (3.111) следует


Решение для упражнения 3.66. Матрицы этих двух наблюдаемых могут, в принципе, быть получены путем интегрирования волновых функций в координатном и импульсном базисах. Однако более красивый способ решения — выразить эти наблюдаемые через операторы рождения и уничтожения в соответствии с уравнением (3.100). Воспользовавшись (3.104), находим матрицы операторов рождения и уничтожения в базисе Фока как


Решение для упражнения 3.67. Для произвольного фоковского состояния |n⟩ имеет место равенство

Для неопределенностей получаем:

Этот же ответ верен для неопределенности импульса:


Решение для упражнения 3.68

a) Для эволюции суперпозиции набора фоковских состояний имеет место равенство

Здесь мы воспользовались тем фактом, что оператор уничтожения связывает только последовательные фоковские состояния: Приведенный выше результат можно переписать как ⟨â⟩(t) = ⟨â⟩(0)e−iωt.

Чтобы вывести соответствующее выражение для оператора рождения, вспомним, что он сопряжен с оператором уничтожения:

â⟩(t) = ⟨ψ(t)|â|ψ(t)⟩ = ⟨ψ(t)|â|ψ(t)⟩* = [⟨â⟩(0)eiωt]* = ⟨â⟩(0)eiωt.

b) Записав оператор координаты как находим:

Аналогичным образом для импульса получаем


Решение для упражнения 3.69. Будем работать в координатном базисе. По аналогии с упр. 3.64 перепишем (3.116) как

Волновая функция (3.117b) в импульсном базисе получается из волновой функции в координатном базисе с помощью преобразования Фурье, как и в упр. 3.25.

Средние значения дисперсии координаты и импульса можно получить интегрированием волновой функции, как в упр. 3.25. Однако также вполне примени́м подход, аналогичный использованному для фоковских состояний в упр. 3.67. Взяв сопряженные к обеим частям уравнения (3.116), мы обнаружим, что ⟨α|â = α*⟨α|; отсюда

Аналогично

Для неопределенностей имеет место равенство

Этот же ответ верен и для дисперсии импульса.


Решение для упражнения 3.70. Рассмотрим некоторое разложение когерентного состояния в числовом базисе

и применим определение когерентного состояния (3.116) к этому разложению. Для левой части (3.116) в соответствии с (3.104a) имеет место равенство

Мы изменили нижний индекс суммирования с n = 0 на n = 1 во втором из приведенных равенств, потому что член, соответствующий n = 0, идет с коэффициентом и, следовательно, обнуляется.

В то же время правую часть (3.116) можно записать как

Уравняв обе стороны, мы находим рекурсивное соотношение

Остается найти такое значение α0, при котором состояние уравнения (Р3.79) нормированно к единице. Находим

Сумма в этом выражении есть разложение Тейлора экспоненты так что имеет место равенство Потребовав, чтобы выполнялось ⟨α|α⟩ = 1, находим

Объединив уравнения (Р3.84) и (Р3.87), получаем


Решение для упражнения 3.71. Для фоковского разложения когерентного состояния (3.122) мы сразу же видим

В координатном базисе для разложений (волновых функций) вакуумного и когерентного состояний [уравнения (3.107a) и (3.117a) соответственно] находим


Решение для упражнения 3.72. Для средней энергии получаем

здесь мы воспользовались определением когерентного состояния â|α⟩ = α|α⟩ и эрмитовым сопряжением к этому соотношению ⟨α|â = ⟨α|α*.

Для дисперсии энергии находим

и следовательно,

⟨ΔE2⟩ = ⟨E2⟩ − ⟨E2 = (ℏω)2|α|2.

Оба эти результата согласуются с (3.124), потому что


Решение для упражнения 3.73. Имея в виду, что когерентное состояние раскладывается в фоковском базисе согласно (3.122) и что каждое фоковское состояние — это собственное состояние гамильтониана с собственным значением ℏω(n + 1/2), находим


Решение для упражнения 3.74

a) Согласно (3.125), когерентное состояние в ходе эволюции остается когерентным, т. е. собственным состоянием оператора уничтожения. Отсюда

â⟩(t) = ⟨αe−iωt|â|αe−iωt⟩ = αe−iωt и

â⟩(t) = [⟨â⟩(t]* = αeiωt.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука