Читаем Отличная квантовая механика полностью

Коэффициент отражения стремится к единице при EV0 (т. е. когда k1 → 0) и к нулю при E → ∞ (т. е. когда k0k1 → 0). Коэффициент пропускания ведет себя противоположным образом.


Решение для упражнения 3.50. Если энергия E ниже уровня потенциального барьера, решение стационарного уравнения Шрёдингера после барьера представляет собой убывающую экспоненту:

где Обратите внимание, в этом случае нет D-волны, потому что она показывала бы при x → ∞ экспоненциальный рост. Условие непрерывности теперь принимает вид

A + B = C;

ik0(A — B) = —κC.

Эта система двух линейных уравнений легко решается и дает

Так как амплитуды падающей и отраженной волн (A и B соответственно) одинаковы по абсолютной величине. Более того, эти волны распространяются с одинаковыми фазовыми и групповыми скоростями, а потому имеют одинаковый ток плотности вероятности. Следовательно, коэффициент отражения равен единице.


Решение для упражнения 3.51. Начальный волновой пакет можно переписать в базисе волновых чисел, согласно (3.52), как

где κ мала по сравнению с k0 и k1. Наша цель — вычислить эволюцию этого состояния. В упр. 3.29 нам помогало то, что собственные состояния импульса в правой части уравнения (Р3.49) автоматически являлись и собственными состояниями энергии. Здесь это уже не так. Однако с учетом заданных предположений мы можем с высокой степенью точности заменить импульсные собственные состояния в разложении выше на соответствующие энергетические собственные состояния.

Чтобы убедиться в этом, запишем собственные состояния энергии (3.76) в виде

где B и C связаны с A согласно уравнению (3.78a). Первый член правой части уравнения (Р3.50) — A-волна — идентичен волновой функции состояния |k0 + κ⟩ слева от барьера для Второй член (B-волна) тоже располагается слева от барьера, но имеет отрицательное волновое число. Третий член (C-волна) расположен справа от барьера. Исходный волновой пакет располагается почти полностью далеко слева от барьера и состоит, тоже почти полностью, из волн с положительными волновыми числами. Это означает, что его разложение (Р3.49) можно переписать как

Теперь, поскольку каждое |ψбар(κ)⟩ есть собственное состояние нашего гамильтониана, мы можем найти эволюцию приведенного выше состояния во времени согласно

где энергия каждого |ψбар(κ)⟩ равна (пренебрегая квадратичными членами по κ) Находим для вектора состояния

Теперь мы можем вычислить интеграл в уравнении (Р3.54) для каждой волны в уравнении (Р3.50) по отдельности. Общим фазовым множителем и вариацией амплитуд B и C в зависимости от малого параметра κ можно пренебречь.

A-волна. Применив стандартные правила преобразования Фурье (упр. Г.5), получаем:

Это гауссов волновой пакет, центр которого располагается в точке и распространяется со скоростью ℏk0/M в положительном направлении. Когда пакет доходит до барьера (т. е. в точке он пропадает из-за множителя θ(—x). Перед тем как это произойдет, полная вероятность, связанная с этим волновым пакетом, будет равна

B-волна обрабатывается аналогично, за исключением того, что интеграл соответствует обратному преобразованию Фурье. Мы получаем

Этот волновой пакет представляет собой зеркальное отображение предыдущего. При t = 0 он расположен в x = —a, но «невидим» из-за множителя θ(—x). Пакет распространяется в отрицательном направлении. Достигнув барьера (одновременно с A-пакетом), он становится «видимым». Этот волновой пакет связан с отражением частицы от барьера. Связанная с ним полная вероятность

C-волна. Воспользовавшись тем, что и снова пренебрегая членами второго порядка по отношению к κ, мы можем заменить в уравнении (Р3.50)

Этот пакет у́же, чем остальные два, в k0/k1 раз. Он начинает свое существование при t = tбар и распространяется в положительном направлении со скоростью ℏk1/M. Данный волновой пакет связан с частицей, прошедшей через барьер, и имеет вероятность Прямое вычисление показывает, что prB + prC = 1.


Решение для упражнения 3.52. Действуя так же, как в упр. 3.47, находим, что решение здесь представляет собой комбинацию шести волновых функций, как показано на рис. 3.6, и является, таким образом, функцией шести переменных. Для каждой из двух границ существует два условия непрерывности (для волновой функции и ее производной):

A + B = C + D;

ik0(A-B) = κ(C-D);

CeκL + De−κL = F + G;

κ(CeκLDe−κL) = ik0(F — G),

где Опять же каждое значение энергии является дважды вырожденным: линейно независимые решения соответствуют материальным волнам, приходящим слева (G = 0) и справа (A = 0). Нам интересен первый вариант, поэтому мы решаем уравнения выше для произвольного F, продвигаясь справа налево. Таким образом находим соотношение между падающей, пропущенной и отраженной амплитудами:

Соответствующие коэффициенты пропускания и отражения даются уравнениями (3.81).


Решение для упражнения 3.53. По аналогии с решением для упр. 3.51 записываем энергетические собственные состояния в виде

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука