Читаем Отличная квантовая механика полностью

Выражение в квадратных скобках — это обратное преобразование Фурье, что неудивительно, ведь мы переходим от волночислового к координатному базису. Первая экспонента в приведенном интеграле — линейный фазовый множитель, который после преобразования Фурье переводится, согласно (Г.14), в сдвиг координаты на a + ℏk0t/M — движение волнового пакета. Вторая экспонента — это функция Гаусса, Фурье-образом которой также является гауссова функция. Следовательно, результирующая волновая функция

c) Сначала вычислим плотность вероятности, принимая во внимание комплексность гауссовой экспоненты в уравнении (Р3.9). Находим:

Это распределение Гаусса с центром в и шириной Чтобы определить дисперсию координаты, воспользуемся упр. Б.18:


Решение для упражнения 3.30

a) В соответствии с уравнением (Р3.10), ширина гауссова волнового пакета растет при большом t согласно

Мы можем переписать это как Подставив d = 10−10 м и M ≈ 10−30 кг, найдем t ≈ 1 нс.

b) Для M ≈ 10−3 кг имеем t ≈ 1018 с, т. е. порядка возраста Вселенной.

c) Согласно уравнению (Р3.10), искомое время удовлетворяет ℏt/Md2 ≈ 1, так что t ∼ 1 с.


Решение для упражнения 3.31. Условие, что p0 много больше неопределенности импульса начального волнового пакета, означает в соответствии с упр. 3.25, что p0 ≫ ℏ/d. Иными словами, пройденное расстояние p0t/M много больше, чем ℏt/Md, т. е. оно много больше, чем в соответствии с уравнением (Р3.11).


Решение для упражнения 3.32. Перепишем стационарное уравнение Шрёдингера

в координатном базисе:

и воспользуемся результатом упр. 3.22:


Решение для упражнения 3.33. Мы можем переписать стационарное уравнение Шрёдингера (3.60) как

где не зависит от x. У этого дифференциального уравнения второго порядка два линейно независимых решения:

ψ(x) = Aekx + Be—kx. (Р3.13)

Множитель κ действителен только в том случае, если E < V0, т. е. полная энергия ниже уровня потенциальной. В противном случае κ становится мнимым, и (Р3.13) принимает вид волны де Бройля

ψ(x) = Aeikx + Be—ikx, (Р3.14)

где — это действительное волновое число.


Решение для упражнения 3.34. Рассмотрим оператор Ĥ — Vmin, где Vmin — минимальное значение V(x). Этот оператор — оператор энергии (3.55) — представляет собой сумму двух неотрицательных функций и импульса и координаты соответственно и, следовательно, тоже неотрицателен (упр. A.73, A.87). Такой оператор не может иметь отрицательных собственных значений (упр. A.72). А значит, у оператора Ĥ нет собственных значений, меньших Vmin.


Решение для упражнения 3.35. Обратимся вновь к уравнению (Р3.12). Если и V(x), и ψ(x) конечны при любых x, то конечна и правая часть этого уравнения. Это означает, что d2ψ(x)/dx2 тоже конечно при любых x. Такой вывод подразумевает, в свою очередь, что первая производная волновой функции непрерывна при всех x. Следовательно, ψ(x) тоже должна быть непрерывна при всех x.


Решение для упражнения 3.36. Предположим, что у некоторого гамильтониана существует собственное состояние |ψ⟩ с собственным значением E, которое не может быть выражено в виде линейной комбинации собственных состояний с действительными волновыми функциями. Запишем волновую функцию этого состояния как сумму действительной и мнимой частей: ψ(x) = ψ1(x) + iψ2(x), где ψ1,2(x) ∈ R. Тогда стационарное уравнение Шрёдингера (3.60) принимает вид:

Это уравнение удовлетворяется, потому что |ψ⟩ — собственное состояние гамильтониана с собственным значением E. Взяв действительные и мнимые части обеих сторон этого уравнения, находим, что и ψ1(x), и ψ2(x) удовлетворяют ему, поэтому соответствующие состояния |ψ1⟩ и |ψ2⟩ также являются собственными состояниями Ĥ с собственным значением E. А значит, состояние |ψ⟩ можно выразить как линейную комбинацию |ψ⟩ = |ψ1⟩ + i|ψ2⟩ энергетических собственных состояний с действительными собственными значениями. Получено противоречие.


Решение для упражнения 3.37. Аргументация аналогична предыдущему упражнению. Рассмотрим энергетическое собственное состояние |ψ⟩ с собственным значением E и волновой функцией ψ(x). Если ψ(x) удовлетворяет стационарному уравнению Шрёдингера с четным потенциалом, то ψ(—x) также удовлетворяет ему. Чтобы убедиться в этом, заменим x на — x в стационарном уравнении Шрёдингера (3.60):

Поскольку наш потенциал четный, V(—x) = V(x). Кроме того, вторая производная имеет свойство Следовательно, приведенное уравнение можно переписать как

так что состояние |ψ⟩ с волновой функцией ψ(—x) тоже является собственным состоянием данного гамильтониана.

Это означает, что состояния |ψ1,2⟩ = |ψ⟩ ± |ψ⟩ также собственные состояния гамильтониана с той же энергией. Более того, |ψ1⟩ имеет четную волновую функцию, а |ψ2⟩ — нечетную. Поэтому состояние |ψ⟩ можно выразить в виде следующей линейной их комбинации:


Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука