Квантовых физиков иногда спрашивают: «Сколько времени пройдет, прежде чем мы сможем телепортировать человека?» Теперь вы можете ответить на этот вопрос. Чтобы телепортировать квантовый объект, требуется две его копии в полностью запутанном состоянии, т. е. в состоянии, которое охватывает все возможные квантовые состояния этого объекта, помимо исходного. Иными словами, чтобы телепортировать капитана «Звездного пути» Пикарда с корабля «Энтерпрайз» на планету Бетазед, нам нужно сначала сделать две его точные копии (одну на корабле и одну на Бетазеде) и подготовить их — т. е. каждую пару молекул в соответствующих телах — в полностью запутанном состоянии!
Необходимое условие для реализации протокола телепортации — наличие схемы измерения двух фотонов в базисе Белла. Хотя подобное измерение теоретически представимо, на практике его реализовать так же трудно, как реализовать вентиль C-NOT для фотонов (см. упр. 2.66). Если же доступны только линейные оптические инструменты, то из белловских состояний можно различить только два. Такой подход намного проще реализовать на практике; именно он используется в большинстве экспериментов по телепортации поляризации фотонов.
Упражнение 2.68.
Предположим, что пара фотонов в одном из белловских состояний попадает в установку, показанную на рис. 2.9. Покажите, что:a) если на входе мы имеем состояние |Φ+
⟩, то детекторы в двух серых прямоугольниках одновременно увидят идентичные диагонально поляризованные фотоны (т. е. щелкнут либо детекторы 1 и 4, либо детекторы 2 и 3);b) если на входе мы имеем состояние |Φ—
⟩, то детекторы в двух серых прямоугольниках одновременно увидят ортогональные диагонально поляризованные фотоны (т. е. щелкнут либо детекторы 1 и 3, либо детекторы 2 и 4);c) если на входе мы имеем состояние |Ψ+
⟩ или |Ψ—⟩, то события обнаружения фотонов произойдут только в одном из двух серых прямоугольников.С квантовой телепортацией тесно связан еще один протокол —
В следующем упражнении делается более строгий анализ.
Упражнение 2.69.
Измерение выполняется в каналах 2 и 3 состоянияИ квантовая телепортация, и обмен запутанностью находят себе применение в квантовой связи. В главе 1 мы узнали, что первостепенной проблемой, затрудняющей широкое практическое использование квантовой криптографии, являются потери в линиях передач. Экспоненциальный характер закона Бугера — Ламберта — Бера, который управляет этими потерями, ведет к тому, что за несколько сотен километров величина коэффициента пропускания снижается на много порядков, что делает квантовую связь со сколько-нибудь разумной скоростью невозможной.
Разумеется, аналогичные потери наблюдаются и в обычных оптоволоконных линиях связи. Однако в классическом случае проблема может быть решена с помощью
Первая технология, лежащая в основе квантового повторителя, — телепортация. Если Алиса и Боб имеют общий запутанный ресурс, то Алисе нет нужды посылать фотон Бобу по прямому каналу, она может его телепортировать. А поскольку измерение Белла можно выполнить и в локации Алисы, фотону источника достаточно будет пройти очень малое расстояние — и, соответственно, с пренебрежимо малыми потерями.
Проблема потерь, однако, остается, только возникает в другом месте — а именно когда мы пытаемся создать тот самый запутанный общий ресурс, необходимый для телепортации, и распределить его между Алисой и Бобом. Квантовый повторитель «заботится» об этом и позволяет осуществить быстрое и эффективное распределение запутанности на большие расстояния.