Классическим вариантом газоотводного двигателя с отводом через боковое отверстие и длинным ходом поршня стала система оружия М.Т. Калашникова (темп стрельбы автомата АКМ и ручного пулемета — 600, единого пулемета — 650 выстр./мин). При выстреле пороховые газы поступают через наклонное боковое отверстие в стенке канала ствола в газовую камеру. Газовый поршень, снабженный обтюрирующими канавками, под действием давления газов начинает двигаться назад, его шток, жестко связанный с затворной рамой, толкает ее назад. Затворная рама, имеющая фигурный вырез на внутренней поверхности, проворачивает затвор, который входит в вырез своим выступом. Затвор после поворота расцепляется с боевыми упорами ствольной коробки, извлекает стреляную гильзу из патронника (предварительное страгивание гильзы при повороте затвора облегчает извлечение) и движется назад вместе с затворной рамой, сжимая возвратную пружину. После отхода затворной рамы под действием давления газов на нужное расстояние отработанные газы выходят в атмосферу через отверстия в газовой трубке. Во время движения гильза ударяется о выступ отражателя и выбрасывается наружу через окно в ствольной коробке. Затворная рама с затвором под действием возвратно-боевой пружины идут вперед, затвор захватывает очередной патрон и досылает его в патронник. Затворная рама останавливается в крайнем переднем положении, а затвор под действием сил инерции продолжает движение вперед и проворачивается выступом по фигурному пазу затворной рамы. При этом его боевые выступы заходят за боевые упоры ствольной коробки. Все ударные нагрузки воспринимает сравнительно массивная затворная рама, ее инерция позволила сократить длину хода подвижной системы, “вывешенное” положение затворной рамы и затвора обеспечивают надежную работу автоматики в самых сложных условиях эксплуатации.
В американском пулемете М60 использован полый газовый поршень с коротким (60 мм) ходом. Отведенные из канала ствола газы проходят через отверстие в боковой стенке газового поршня и, расширяясь, заполняет внутреннее пространство газового поршня и переднюю секцию газовой камеры. Возросшее давление толкает поршень назад. Тело поршня при откате разъединяет отверстия в стенке поршня и в стволе, и дальнейшее поступление газа прекращается. Поршень движется назад, приводит в действие шток, который толкает затвор. Импульс пороховых газов, подаваемых на шток, сообщает достаточное количество энергии для полного цикла автоматики (включая подачу патронной ленты). Суть заключается в том, что когда накопится энергия, достаточная для преодоления трения и нагара, поршень пойдет назад. Двигаясь, он автоматически отсекает газы и является как бы саморегулирующимся. Подобная конструкция часто называется “системой постоянного объема”.
(Продолжение следует)
Михаил ВИНИЧЕНКО
Подземная борьба в Первую мировую
* См. "ТиВ" №№ 2,3,9,10/2001 г., 1,3,4/2002 г.
Сложность и опасность ведения подземной войны приводила к ее некоторому ограничению в 1917 г. Достигнув своего апогея в 1916 г., подземная война (только в июне этого года немцами было взорвано 126 горнов, англичанами — 101 горнов) в 1917 г. пошла несколько на убыль.
Всего же за два года войны на Западном фронте было взорвано горнов со стороны союзников: 1916-750 горнов, 1917 — 117 горнов (всего 867); со стороны немцев: 1916 — 696 горнов, 1917-106 горнов (всего 802). Итого — 1669 горнов с обеих сторон. Эта довольно внушительная цифра свидетельствует о стремлении как англичан, французов и итальянцев, так и немцев и австрийцев решать некоторые проблемы наступления и обороны за счет подземных действий. С учетом стремительного развития авиации и более широкого ее применения для решения различных задач в операциях, борьба в первой мировой войне стала приобретать воздушно-наземноподземный характер.