Читаем Tertium organum полностью

Возникает вопрос, как может такое тонкое орудие анализа, как математика, не чувствовать измерений, если они представляют собой какие-то реальные свойства пространства.

Говоря о математике, мы прежде всего должны признать, как основную предпосылку, что всякому математическому выражению соответствует отношение каких-то реальностей.

Если этого нет, если это не верно — то нет математики. Это ее главная сущность, главное содержание. Выражать отношения, вот задача математики. Но отношения должны быть между чем-нибудь. Вместо алгебраических а, b и с всегда должно быть можно подставить какую-нибудь реальность. Это азбука всей математики. А, b и c — это кредитные билеты, они могут быть настоящими, и могут быть фальшивыми, если за ними нет никакой реальности.

"Измерения" играют здесь очень странную роль. Если мы изобразим их алгебраическими знаками а, b и с, то они будут иметь характер фальшивых кредитных билетов. Эти а, b и с нельзя заменить никакими реальными величинами, которые выражали бы отношения измерений.

Обыкновенно изображают измерения степенями, первой, второй и третьей, то есть если линию называют а, то квадрат, стороны которого равны этой линии, называют а2, и куб, стороны которого равны этому квадрату, называют а3.

Это, между прочим, дало основание Хинтону строить теорию тессарактов, тел четырех измерений, а4. Но это чистая беллетристика. Прежде всего потому, что изображение "измерений" степенями совершенно условно. Все степени можно изобразить на линии. Возьмем отрезок а, равный пяти миллиметрам, — тогда отрезок в 25 миллиметров будет его квадратом, то есть а2; а отрезок в 125 миллиметров будет кубом, то есть а3.

Как же понять, что математика не чувствует измерений, — то есть что математически нельзя выразить разницу между измерениями?

Это можно понять и объяснить только одним — именно, что этой разницы не существует.

И действительно, мы знаем, что все измерения в сущности тождественны, то есть каждое из трех измерений можно по очереди рассматривать, как первое, как второе, как третье и наоборот. Это уже ясно доказывает, что измерения не есть математические величины. Все реальные свойства вещи могут быть выражены математически в виде величин, то есть числами, показывающими отношение этих свойств к другим свойствам.

Но математика в вопросе об измерениях видит как будто больше нас или дальше нас, через какие-то грани, которые останавливают нас, но не стесняют ее, — и видит, что нашим понятиям измерений не соответствуют никакие реальности.

Если бы три измерения соответствовали действительно трем степеням, то мы имели бы право сказать, что только три степени относятся к геометрии, а все остальные отношения высших степеней, начиная с четвертой, лежат за геометрией.

Но у нас нет даже этого. Изображение измерений степенями совершенно условно.

Вернее сказать — геометрия с точки зрения математики есть искусственное построение для разрешения задач на условных данных, выведенных, вероятно, из свойств нашей психики.

Систему исследования "высшего пространства" Хинтон называет метагеометрией, и он связывает с метагеометрией имена Лобачевского, Гаусса и других исследователей неэвклидовой геометрии.

Мы должны рассмотреть, в каком отношении к затронутым нами вопросам находятся теории этих ученых.

Хинтон выводит свои идеи из Канта и Лобачевского.

Другие, наоборот, противопоставляют идеи Канта идеям Лобачевского. Так, Роберто Бонола в "Неэвклидовой геометрии" говорит, что воззрение Лобачевского на пространство противоположно кантовскому. Он говорит:

Учение Канта рассматривает пространство как некоторую форму субъективного созерцания, необходимо предшествующую всякому опыту; учение Лобачевского, примыкающее скорее к сенсуализму и обычному эмпиризму, возвращает геометрию в область опытных наук. (Роберто Бонола. Неэвклидова геометрия. СПб., 1910, с. 77.)

Какой же взгляд правилен и в каком отношении стоят идеи Лобачевского к нашей проблеме? Вернее всего будет сказать: ни в каком отношении. Неэвклидова геометрия не есть метагеометрия, и неэвклидова геометрия стоит к метагеометрии в таком же отношении, как Эвклидова геометрия.

Результаты всей неэвклидовой геометрии, подвергшей переоценке основные аксиомы Эвклида и нашедшей свое наиболее полное выражение в работах Больяйя, Гаусса и Лобачевского, выражается в формуле: Аксиомы данной геометрии выражают свойства данного пространства.

Так, геометрия на плоскости принимает все три аксиомы Эвклида, то есть:

1. прямая линия есть кратчайшее расстояние между двумя точками;

2. каждую фигуру можно переносить на другое место, не нарушая ее свойств;

3. параллельные линии не встречаются.

(Эта последняя аксиома обыкновенно выражается по Эвклиду иначе).

В геометрии на сфере или на вогнутой поверхности верны только две первые аксиомы, так как меридианы параллельные у экватора у полюсов уже встречаются. Причем в геометрии на сфере сумма трех углов треугольника более двух прямых, а в геометрии на вогнутой поверхности — меньше двух прямых.

Перейти на страницу:

Похожие книги

Иисус Неизвестный
Иисус Неизвестный

Дмитрий Мережковский вошел в литературу как поэт и переводчик, пробовал себя как критик и драматург, огромную популярность снискали его трилогия «Христос и Антихрист», исследования «Лев Толстой и Достоевский» и «Гоголь и черт» (1906). Но всю жизнь он находился в поисках той окончательной формы, в которую можно было бы облечь собственные философские идеи. Мережковский был убежден, что Евангелие не было правильно прочитано и Иисус не был понят, что за Ветхим и Новым Заветом человечество ждет Третий Завет, Царство Духа. Он искал в мировой и русской истории, творчестве русских писателей подтверждение тому, что это новое Царство грядет, что будущее подает нынешнему свои знаки о будущем Конце и преображении. И если взглянуть на творческий путь писателя, видно, что он весь устремлен к книге «Иисус Неизвестный», должен был ею завершиться, стать той вершиной, к которой он шел долго и упорно.

Дмитрий Сергеевич Мережковский

Философия / Религия, религиозная литература / Религия / Эзотерика / Образование и наука