Существуют некоторые косвенные доказательства наличия внимания у рыб. Например, Piffer et al. (2012) показали, что гуппи могут различать небольшие количества. По их мнению, это указывает на внимание, поскольку некоторые модели такого числового поведения у млекопитающих ссылаются на внимание; считается, что пределы компетентности в работе с точными числами соответствуют способности к многообъектному вниманию (Hyde and Wood, 2011). В другом исследовании Jun et al. (2016) приводят аргументы в пользу внимания у электрических рыб. Они изучают активное восприятие и реакцию на новизну в темной среде и приходят к выводу, что рыбы демонстрируют признаки отбора и интенсивной обработки информации, которые являются характерными признаками внимания. Само по себе активное сенсорное поведение может свидетельствовать лишь об ориентации, но наличие реакции новизны и признаков обучения указывает на то, что здесь может происходить нечто большее. Возможно, рыбки внимательны, и информация сохраняется в рабочей памяти, чтобы направлять дальнейшее поведение.
Были предприняты различные попытки исследовать рабочую память у рыб более непосредственно. В одной из неудачных попыток Ньюпорт и др. (Newport et al., 2014) задали рыбе-дугуну задачу отсроченного подбора к образцу. Этот вид не смог выучить задание. Другие виды могут работать по-другому. Например, Гаттридж и Браун (2014) показали, что акулы Порт-Джексона восприимчивы к следовому обучению. В этой парадигме между необусловленными и обусловленными стимулами существует 10-секундная задержка, что свидетельствует о кратковременном сохранении в памяти.
Кроме того, существуют интригующие доказательства нейронной синхронности. Например, Фридрих и другие (2004) зарегистрировали синхронные осцилляции гамма-диапазона у зебрафиш во время задачи различения запахов. В другом исследовании Рамчаритар и др. (2006) изучали "реакцию избегания помех" (JAR) у электрических рыб. JAR используется для блокировки электрических сигналов от сородичей, которые могут помешать рыбе получить точную сенсорную информацию. Как отмечают авторы, JAR в этом смысле напоминает фильтр внимания. Они обнаружили, что JAR связан с синхронизацией гамма-диапазона.
Рассмотренные здесь находки рыб призваны проиллюстрировать направления исследований, которые указывают на то, что некоторые виды рыб могут обладать теми психологическими и нейрофизиологическими ресурсами, о которых говорит теория сознания AIR. Эти данные далеко не окончательны, но, надеюсь, достаточны, чтобы предположить, что мы не можем исключить наличие сознания у рыб.
Головоногие моллюски
Не отходя от темы морских обитателей, я хочу обратиться к головоногим моллюскам - классу, в который входят кальмары, каракатицы и осьминоги. Некоторые из этих животных, особенно осьминоги, известны своими впечатляющими когнитивными способностями, такими как стратегическая охота, но что мы скажем об их сознании?
Доказательства, подтверждающие теорию AIR, трудно найти. Существует много исследований, посвященных реакциям ориентации у головоногих моллюсков, но мало тех, которые пытаются разграничить ориентацию и внимание. Например, когда каракатицы видят добычу, они меняют направление взгляда в ее сторону, выставляют первую пару хармсов и меняют форму тела. Хэнлон и Мессенджер (1996: 51) называют это вниманием, но это задача ориентации. Насколько мне известно, не существует исследований, в которых использовались бы методы, обычные для изучения внимания млекопитающих, такие как тесты на точность различения мест, на которые дается сигнал (эти тесты наиболее убедительны, когда они контролируют ориентацию, что может быть затруднительно для головоногих). Более убедительными являются исследования, указывающие на процессы отбора. Например, Альвес и др. (2007) обучали каракатиц ориентироваться с помощью различных пространственных сигналов. Они обнаружили, что животные могли гибко адаптироваться к новым сигналам и выбирать между ними, когда их было несколько, используя соленость сигнала и другие факторы. Это может объясняться избирательным вниманием, но также может быть достигнуто за счет выученных ассоциаций между сигналами и центрами моторного планирования.