Как и в случае любого другого онкогена, интерес исследователей переключился со структуры на функцию: каким образом
В середине 1980-х, мало что зная о первых достижениях молекулярной генетики ХМЛ, группа химиков швейцарской фармкомпании
Химики-фармацевты часто размышляют о молекулах на языке форм и поверхностей. Они живут в мире топологии, и воображение их касается молекул с тактильной сверхчувствительностью слепого. Если поверхность молекулы ровная, без выраженных особенностей, такой белок вряд ли будет уязвим для лекарств: невыразительная, точно у профессионального игрока в покер, топология – плохая мишень для фармпрепаратов. А вот если поверхность белка отмечена глубокими расщелинами или карманами, из него может получиться удобная мишень для связывания с другими молекулами, а потому он с большей вероятностью поддастся лекарственной атаке.
На счастье, у киназ есть по крайней мере один глубокий карман. В 1976 году группа японских ученых, ищущих яды в морских бактериях, случайно обнаружила вещество под названием стауроспорин – крупную молекулу в форме несимметричного мальтийского креста, которая могла связываться с карманом большинства киназ. Стауроспорин ингибировал десятки киназ, и яд из него выходил превосходный – да только вот как лекарство он никуда не годился, потому что не умел различать активные и неактивные киназы, “полезные” и “вредные”.
Но даже само существование стауроспорина вдохновило Маттера. Если морские бактерии синтезируют вещество, неизбирательно блокирующее киназы, то уж группа химиков наверняка сумеет сконструировать вещество, блокирующее лишь нужные им киназы. В 1986 году Маттер и Лайдон нащупали путеводную нить. Испытав миллионы потенциальных молекул, они обнаружили структуру, которая, подобно стауроспорину, влезала в карман киназы и подавляла ее функцию. В отличие от стауроспорина, эта молекула была довольно простой. Маттер и Лайдон сконструировали десятки ее вариаций в надежде, что какие-то из них будут избирательнее и крепче связываться с той или иной киназой. В чем-то они повторяли работу Пауля Эрлиха, который в 1890-х терпеливо повышал специфичность производных анилина, тем самым создав целую вселенную новых лекарств. История повторяется, но химия, как знали Маттер и Лайдон, повторяется еще упорнее.
Это была мучительная, однообразная игра – химия методом проб и ошибок. Юрг Циммерманн, талантливый химик из группы Маттера, создавал тысячи вариантов материнской молекулы и передавал их клеточному биологу, Элизабет Бухдунгер[961]
. Она проверяла каждую молекулу на клетках, отбраковывая нерастворимые или токсичные варианты, и сообщала результаты Циммерманну, который дорабатывал молекулы в нужном направлении. Так раз за разом возобновлялась эстафета, ведущая ко все более специфичным и менее токсичным соединениям. “[Это напоминало] то, как слесарь подгоняет ключ к замку, – говорил Циммерманн. – Ты слегка меняешь форму ключа и проверяешь. Годится? Если нет, снова меняешь”.