Читаем Величайшие математические задачи полностью

Задачи на приз тысячелетия относятся к несжимаемому потоку, поскольку хорошо известно, что сжимаемые потоки ведут себя отвратительно. В уравнениях движения самолета, к примеру, возникает множество проблем, если самолет движется в потоке воздуха быстрее звука. Это знаменитый «звуковой барьер», очень беспокоивший в свое время инженеров, которые работали над проектами сверхзвуковых истребителей. Эта проблема связана с хорошей сжимаемостью воздуха. Если тело движется сквозь несжимаемую жидкость, оно расталкивает частицы этой жидкости в стороны со своего пути, как если бы это были шарики. Если частицы накапливаются, они замедляют тело. Но в сжимаемой жидкости, где существует предел скорости движения волн (а именно скорость звука), этого не происходит. На сверхзвуковых скоростях, вместо того чтобы расходиться в стороны, воздух скапливается перед самолетом, и его плотность там растет беспредельно. Результат — ударная волна. Математически это нарушение непрерывности давления воздуха, которое резко меняет значение на фронте ударной волны. Физически это звуковой удар: громкий хлопок. Ударная волна, если ее не учитывают, может повредить самолет, так что конструкторы волновались не зря. Однако скорость звука — не непреодолимый барьер, а всего лишь препятствие. Ее существование говорит о том, что уравнение Навье — Стокса для сжимаемой жидкости не обязательно имеет гладкие решения на всем диапазоне времен даже в двух измерениях. Так что в этом случае ответ известен заранее, и он отрицателен.

Математика ударной волны — большой раздел среди уравнений частных производных, несмотря на разрывы в решениях. Хотя уравнение Навье — Стокса само по себе не является хорошей физической моделью для сжимаемых жидкостей, математическую модель можно модифицировать, добавив к уравнениям дополнительные условия, которые помогут учесть ударную волну и нарушение непрерывности в ней. Но в потоке несжимаемой жидкости ударные волны не возникают, так что можно по крайней мере предположить, что в этом случае решения должны существовать для каждого момента времени, каким бы сложным (но обязательно гладким) ни было начальное состояние потока.

Кое-какие положительные результаты для трехмерного уравнения Навье — Стокса уже имеются. Если в начальном состоянии поток характеризуется достаточно маленькими скоростями, т. е. течет вяло и очень медленно, то и первое, и второе утверждения верны. Эти утверждения верны даже при больших скоростях — на протяжении некоторого ненулевого промежутка времени. Неизвестно, существует ли решение, верное для любого момента в будущем, но есть некоторый промежуток времени, на котором решение существует точно. Может показаться, что эту логику рассуждений можно повторять без конца, продвигая решение вперед во времени на небольшие промежутки и используя всякий раз конечный результат как новое начальное состояние. Проблема с подобным подходом заключается в том, что временны́е интервалы при этом могут уменьшаться настолько стремительно, что бесконечное число шагов будет укладываться в конечное время. К примеру, если каждый последовательный шаг продвигает решение на половину времени, достигнутого на предыдущем шаге, то весь процесс закончится за время  что равняется 2. Если решение прекращает существовать — в настоящее время это чисто гипотетическое предположение, но рассматривать его мы все же можем, то говорят, что решение, о котором идет речь, разрушается. Время, за которое это происходит, называется временем разрушения решения.

Так что в четырех задачах, по существу, спрашивается о том, могут ли решения разрушаться. Если не могут, верны утверждения 1 и 2; если могут — утверждения 3 и 4. Возможно, решения могут разрушаться в бесконечном пространстве, а на конечном плоском торе — не могут. Кстати говоря, если ответ на вопрос 1 положителен, то положителен ответ и на вопрос 2, потому что поток любой структуры на плоском торе можно интерпретировать как пространственно периодический поток в целом бесконечном пространстве. Речь идет о том, чтобы наполнить пространство копиями прямоугольника, о котором идет речь, и в каждом воспроизвести поток в точности той же структуры. Правила склеивания для тора гарантируют, что поток, пересекая эти плоские стыки, остается гладким. Аналогично если верно утверждение 4, то верно и утверждение 3 по той же причине. Мы просто делаем начальное пространство пространственно периодическим. Но, насколько мы сейчас в состоянии сказать, ответ на вопрос 2 может оказаться положительным даже при отрицательном ответе на вопрос 1.

Нам известен, однако, один поразительный факт, касающийся разрушения решений. Если существует решение с конечным временем разрушения, то максимальная скорость жидкости во всех точках пространства должна стать произвольно большой. Это могло бы произойти, к примеру, если бы сформировалась струя и скорость ее росла столь стремительно, что уже через конечный промежуток времени она улетела бы в бесконечность.


Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное