Читаем Внутреннее устройство Linux полностью

В правом столбце с заголовком CPU можно увидеть распределение процессорного времени (столбцы us, sy, id и wa). Они сообщают соответственно процентное соотношение времени, которое процессор тратит на задачи пользователя, системные задачи (задачи ядра), бездействие и ожидание ввода/вывода. В приведенном примере запущено не так много пользовательских процессов (они используют не более 1 % процессорного времени); ядро не делает практически ничего, в то время как процессор находится в бездействии 99 % всего времени.

Теперь взгляните, что происходит, если через некоторое время запускается большая команда (первые две строки появились перед самым запуском программы) (пример 8.3).

Пример 8.3. Активность памяти

procs ———memory———-swap——io— — system——cpu—

r b swpd free buff cache si so bi bo in cs us sy id wa

1 0 320412 2861252 198920 1106804 0 0 0 0 2477 4481 25 2 72 0

1 0 320412 2861748 198924 1105624 0 0 0 40 2206 3966 26 2 72 0

1 0 320412 2860508 199320 1106504 0 0 210 18 2201 3904 26 2 71 1

1 1 320412 2817860 199332 1146052 0 0 19912 0 2446 4223 26 3 63 8

2 2 320284 2791608 200612 1157752 202 0 4960 854 3371 5714 27 3 51 18

1 1 320252 2772076 201076 1166656 10 0 2142 1190 4188 7537 30 3 53 14

0 3 320244 2727632 202104 1175420 20 0 1890 216 4631 8706 36 4 46 14

Как следует из примера 8.3 (маркер ), процессор используется в течение продолжительного периода, в особенности пользовательскими процессами. Поскольку свободной памяти достаточно, объем использованного кэша и буфера начинает возрастать, так как ядро применяет диск сильнее.

Чуть позже можно увидеть интересное (маркер ): ядро извлекает в память страницы из области подкачки (столбец si). Это означает, что команда, которая только что запустилась, запросила некоторые из страниц, используемых совместно с другим процессом. Такое встречается часто, многие процессы применяют код из определенных общих библиотек только при своем запуске.

Обратите также внимание на то, что столбец b сообщает о том, что некоторые процессы блокированы (им не разрешен запуск) в ожидании страниц памяти. В целом количество свободной памяти уменьшается, но до ее нехватки еще очень далеко. Наблюдается также значительное количество дисковой активности, что отмечено увеличением значений в столбцах bi (blocks in, блоки «на входе») и bo (blocks out, блоки «на выходе»).

Результат будет совсем другим, если возникнет нехватка памяти. По мере уменьшения свободного пространства будут уменьшаться и размеры буфера с кэшем, поскольку ядру все в большей степени требуется пространство для пользовательских процессов. Когда не останется совсем ничего, вы увидите активность в столбце so («выходящая» подкачка), так как ядро начинает перемещать страницы на диск. В этот момент практически все остальные столбцы вывода изменятся, чтобы отобразить количество выполняемой ядром работы. Вы заметите, что увеличилось системное время, больше данных перемещается на диск и с него, а также больше процессов заблокировано, поскольку память, которую они намерены использовать, недоступна (она перемещена в область подкачки).

Я объяснил не все столбцы вывода команды vmstat. Узнать подробности вы можете на странице руководства vmstat(8). Чтобы лучше их понимать, сначала может потребоваться узнать больше о том, как ядро управляет памятью: из лекций или книги вроде Operating System Concepts («Общие представления об операционных системах»), 9-е издание (Wiley, 2012).

8.11. Отслеживание ввода/вывода

По умолчанию команда vmstat выводит некоторую общую статистику ввода/вывода. Хотя можно получить детализированные сведения об использовании ресурсов каждого раздела с помощью команды vmstat — d, в этом случае вывод будет довольно объемным. Попробуйте начать с инструмента, предназначенного только для статистики ввода/вывода, — команды iostat.

8.11.1. Использование команды iostat

Подобно команде vmstat, при запуске без параметров команда iostat показывает статистику за все время работы компьютера:

$ iostat

[kernel information]

avg-cpu: %user %nice %system %iowait %steal %idle

4.46 0.01 0.67 0.31 0.00 94.55

Device: tp s kB_read/s kB_wrtn/s kB_read kB_wrtn

sda 4.6 7 7.2 8 49.86 9493727 65011716

sde 0.0 0 0.0 0 0.00 1230 0

Часть avg-cpu в верхней части сообщает ту же информацию об использовании процессора, что и другие утилиты, которые вы видели в этой главе. Перейдите к нижней части, которая показывает для каждого из устройств следующее.

tps

Среднее количество пересылок данных в секунду

kB_read/s

Среднее количество считанных килобайтов в секунду

kB_wrtn/s

Среднее количество записанных килобайтов в секунду

kB_read

Общее количество считанных килобайтов

kB_wrtn

Общее количество записанных килобайтов

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT