Читаем Внутреннее устройство Linux полностью

Еще одно сходство с командой vmstat таково: можно передавать величину интервала как аргумент, например iostat 2, чтобы результаты обновлялись каждые 2 секунды. При использовании интервала может потребоваться отобразить отчет только об устройстве. Для этого применяется параметр — d (например, iostat — d 2).

По умолчанию в отчете команды iostat не приводится информация о разделах. Чтобы отобразить всю такую информацию, используйте параметр — p ALL. Поскольку в типичной системе бывает несколько разделов, вы получите обширный отчет. Вот фрагмент того, что вы можете увидеть:

$ iostat — p ALL

— snip

— Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn

— snip-

sda 4.67 7.27 49.83 9496139 65051472

sda1 4.38 7.16 49.51 9352969 64635440

sda2 0.00 0.00 0.00 6 0

sda5 0.01 0.11 0.32 141884 416032

scd0 0.00 0.00 0.00 0 0

— snip—

sde 0.00 0.00 0.00 1230 0

В этом примере все устройства sda1, sda2 и sda5 являются разделами диска sda, поэтому между столбцами, относящимися к чтению и записи, будет небольшое наложение данных. Однако сумма значений, относящихся к разделам, не обязательно должна равняться значению для диска. Несмотря на то что чтение c устройства sda1 также рассматривается как чтение с диска sda, помните о том, что с диска sda можно выполнять считывание напрямую, например при чтении таблицы разделов.

8.11.2. Отслеживание использования ввода/вывода каждого процесса с помощью команды iotop

Если вам необходимо копнуть глубже, чтобы увидеть ресурсы ввода/вывода, используемые отдельными процессами, вам может помочь команда iotop. Применение этой команды похоже на работу с командой top. Появляется постоянно обновляемый отчет, который показывает процессы, использующие большую часть ресурсов ввода/вывода, а общий итог приведен вверху:

# iotop

Total DISK READ: 4.76 K/s | Total DISK WRITE: 333.31 K/s

TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND

260 be/3 root 0.00 B/s 38.09 K/s 0.00 % 6.98 % [jbd2/sda1-8]

2611 be/4 juser 4.76 K/s 10.32 K/s 0.00 % 0.21 % zeitgeist-daemon

2636 be/4 juser 0.00 B/s 84.12 K/s 0.00 % 0.20 % zeitgeist-fts

1329 be/4 juser 0.00 B/s 65.87 K/s 0.00 % 0.03 % soffice.b~ash-pipe=6

6845 be/4 juser 0.00 B/s 812.63 B/s 0.00 % 0.00 % chromium-browser

19069 be/4 juser 0.00 B/s 812.63 B/s 0.00 % 0.00 % rhythmbox

Обратите внимание на то, что здесь наряду со столбцами сведений о пользователе, команде и чтении/записи присутствует столбец TID (идентификатор потока) вместо идентификатора процесса. Инструмент iotop — одна из немногих утилит, которые отображают потоки вместо процессов.

Столбец PRIO (приоритет) отображает приоритет ввода/вывода. Он похож на приоритет процессора, который вы уже видели, но он влияет на то, насколько быстро ядро распределяет операции чтения и записи для процесса. В таком приоритете, как be/4, часть be является классом обслуживания, а число задает уровень приоритета. Как и для приоритетов процессора, более важными являются меньшие числа. Например, ядро отводит больше времени на ввод/вывод для процесса с приоритетом be/3, чем для процесса с приоритетом be/4.

Ядро использует класс обслуживания, чтобы обеспечить дополнительное управление планированием ввода/вывода. Вы увидите следующие три класса обслуживания в команде iotop.

• be — наилучший объем работы. Ядро старается наиболее справедливо распределить время ввода/вывода для этого класса. Большинство процессов запускаются в этом классе обслуживания.

• rt — реальное время. Ядро планирует любой ввод/вывод в реальном времени перед любым другим классом ввода/вывода, каким бы он ни был.

• idle — бездействие. Ядро выполняет ввод/вывод для этого класса только тогда, когда не должен быть выполнен никакой другой ввод/вывод. Для этого класса обслуживания не указывается уровень приоритета.

Можно проверить и изменить приоритет ввода/вывода для процесса с помощью утилиты ionice; подробности см. на странице руководства ionice(1). Хотя вам вряд ли потребуется беспокоиться о приоритетах ввода/вывода.

8.12. Отслеживание процессов с помощью команды pidstat

Вы увидели, как можно отслеживать конкретные процессы с помощью таких утилит, как top и iotop. Однако эти результаты обновляются в реальном времени, при каждом обновлении предыдущий отчет стирается. Утилита pidstat позволяет вам отследить использование ресурсов процессом с течением времени в стиле команды vmstat. Вот простой пример, в котором с ежесекундным обновлением отслеживается процесс 1329:

$ pidstat — p 1329 1

Linux 3.2.0-44-generic-pae (duplex) 07/01/2015 _i686_ (4 CPU)

09:26:55 PM PID %usr %system %guest %CPU CPU Command

09:27:03 PM 1329 8.00 0.00 0.00 8.00 1 myprocess

09:27:04 PM 1329 0.00 0.00 0.00 0.00 3 myprocess

09:27:05 PM 1329 3.00 0.00 0.00 3.00 1 myprocess

09:27:06 PM 1329 8.00 0.00 0.00 8.00 3 myprocess

09:27:07 PM 1329 2.00 0.00 0.00 2.00 3 myprocess

09:27:08 PM 1329 6.00 0.00 0.00 6.00 2 myprocess

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT