Читаем Золотое сечение [Математический язык красоты] (Мир математики. т.1.) полностью

В предыдущей главе мы выяснили, что с помощью «золотого» прямоугольника можно получить логарифмическую спираль, но ее можно также построить, взяв «золотой» треугольник ABC с углами 36°, 72° и 72° (в котором АВ/ВС = Ф). Если разделить угол В пополам, мы получим два треугольника: DAB и BCD. Первый имеет углы 36°, 36° и 108°, поэтому является «золотым» треугольником.

Второй, BCD, подобен исходному, так что тоже является «золотым» треугольником. Если мы продолжим процесс, разделив угол С пополам, то получим еще один треугольник CDE, который, в свою очередь, подобен предыдущим двум.

Теперь вспомним, как мы получали меньшие «золотые» прямоугольники, удаляя в данном «золотом» прямоугольнике квадраты. Если в «золотом» треугольнике мы будем продолжать делить углы пополам, то будем получать все меньшие «золотые» треугольники. Этот процесс эквивалентен удалению «золотого» гномона. Таким образом мы получим спираль последовательных «золотых» треугольников, сходящуюся, как и в случае «золотых» прямоугольников, к одной точке.

Символика пятиконечной звезды

Почему те звезды, которые мы наблюдаем на небе, испокон веков изображаются в виде пятиконечной звезды? Одно из объяснений: из-за их мерцания. Этот визуальный эффект вызван прохождением звездного света через верхние слои атмосферы разной плотности. Как бы то ни было, мало что изменилось с тех пор, когда наши предки изучали небо, пытаясь разгадать его скрытый смысл. Изображение звезд в виде пятиконечной звезды встречается с древних времен, еще на глиняных табличках Месопотамии, а также в египетских иероглифах.

Символ пятиконечной звезды, известный как пентаграмма, служил тайным знаком пифагорейцев. Для них пентада, то есть число 5, олицетворяла здоровье и красоту, поскольку она была гармоничным сочетанием числа 2, первого четного числа, или диады, и числа 3, первого нечетного числа, или триады.

Пентаграмма — это геометрическая фигура, имеющая долгую историю в качестве символа тайных обществ. Она использовалась рыцарями ордена розенкрейцеров и часто встречается в эмблемах масонских лож.

Изображение пятиконечной звезды часто встречается в нашей повседневной жизни. Например, звезды на Голливудской «Аллее славы» в Лос-Анджелесе, а также эмблемы многих революционных групп.

Звезда — важный элемент на разных флагах и не только знак революционной идеологии. Она встречается на флагах некоторых мусульманских стран, таких как Марокко, символизируя пять заповедей ислама. Кроме того, звезды, обозначающие штаты на флаге США, также пятиконечные.

МАТИЛА ГИКА (1881–1965)

Принц Матила Гика был писателем, румынским дипломатом и профессором эстетики в Соединенных Штатах. Он изучал золотое сечение, о котором писал в книгах, сегодня считающихся классическими, таких как «Эстетика пропорций в природе и искусстве» (1927) и «Золотое сечение» (1931). Благодаря его работам золотое сечение стало частью современной европейской культуры. В своих книгах он выдвинул известный тезис: древнегреческие художники классической эпохи использовали золотое сечение преднамеренно. Хотя эта идея очень популярна, она не принята другими экспертами и по-прежнему остается предметом дискуссий.

Книги Гика пытались охватить всю классическую культуру, уделяя особое внимание идеям Платона о том, что числа «существуют» не только в абстрактном мире. Идеи Гика стали популярны во всем мире и приобрели известных, хотя иногда слишком пылких сторонников, таких как французский поэт Поль Валери.

Периодические и апериодические плитки

В нашей беспокойной жизни нам часто не хватает времени, чтобы обратить внимание на окружающий мир, в том числе на то, что у нас под ногами. Поэтому мы не замечаем геометрии на тротуаре (если, конечно, обо что-нибудь случайно не споткнемся). В этом параграфе мы займемся формами кирпичей, керамической плитки и мозаики — всего того, что нас окружает.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное