Читаем Золотое сечение [Математический язык красоты] (Мир математики. т.1.) полностью

Мы нашли необходимое условие для покрытия равными многоугольниками: сумма углов должна быть 360°. Другими словами, угол правильного многоугольника должен быть делителем 360°. У каких многоугольников есть такие углы? Только у правильного шестиугольника, правильного треугольника и квадрата. Это единственные правильные многоугольники, которые можно использовать в качестве плитки. Так как шестиугольник делится на шесть равносторонних треугольников, можно сказать, что существует только две возможности заполнить поверхность правильными многоугольниками: квадратные и треугольные плитки. Именно они и используются чаще всего, мы видим их вокруг — на полу и на стенах.

Однако пятиугольники не совсем бесполезны для наших целей. По правде говоря, плитка может быть и в форме пятиугольников, если только они не являются правильными. Например, пятиугольник, образованный квадратом и равносторонним треугольником, лучше всего можно представить в виде открытого конверта. Этот многоугольник является равносторонним — все его стороны одной и той же длины — но углы его не равны. Существует еще 13 видов других неправильных многоугольников, которые также могут быть использованы в качестве плитки. Причина, по которой они редко используются на практике, кроется, вероятно, в их не эстетичности. Хотя форма их геометрически корректна.

Альгамбра — дворец времен династии Насридов, правившей Гранадским эмиратом в южной Испании до его завоевания христианами в 1492 г. Это впечатляющий памятник архитектуры и одна из самых посещаемых достопримечательностей в мире. Если внимательно изучить архитектуру дворца, мы увидим, что в ее основе лежат простые правила.

Покажем это на трех типах мозаики. Именно мозаичная плитка и ее повторяющиеся узоры приводят к удивительным результатам. Искусство мавританских художников породило сложные мозаики, которые мы видим вокруг нас.

Первый тип мозаики в Альгамбре называется «кость» или «насридская кость». На рисунке ниже можно увидеть, как она выполняется и какие узоры получаются.

В данном квадрате проведем диагонали, затем разделим основание квадрата на четыре равные части и через эти точки проведем вертикальные линии. Наконец, извлечем полученные трапеции и поместим их над верхней и под нижней сторонами квадрата.

Второй тип — «птичка» — получается из треугольных узоров и часто используется во многих современных мозаиках.

Возьмем равносторонний треугольник и проведем дуги от вершины до середины каждой стороны. Вынем эти сегменты и поместим их на внешней стороне исходного треугольника.

Третий тип мозаики довольно необычен. За основу берутся квадратные плитки, и получается узор в виде «гвоздей».

Внутри квадрата построим два прямоугольных треугольника, гипотенузы которых являются сторонами квадрата. Затем извлечем треугольники и поместим их с внешней стороны смежных сторон.

Другие замечательные примеры математических мозаик в искусстве в изобилии встречаются в творчестве нидерландского художника Эшера. Он родился на рубеже XIX и XX веков и уже в юности использовал математику в своих работах. Однако его интерес к мозаике проявился после поездки в Альгамбру в 1936 г.

Эта мозаика Эшера использует два узора в виде птиц, которые хотя и не являются геометрическими фигурами, тем не менее заполняют поверхность не оставляя зазоров.

До сих пор мы видели мозаичные узоры (треугольные и квадратные), использующие только один вид плитки, но можно также построить полуправильные мозаики, в которых узором является пара правильных многоугольников, отличающихся друг от друга. Как и прежде, единственное условие — чтобы углы в сумме давали 360°.

Многие дизайны используют повторяющиеся узоры, чтобы покрыть поверхность не оставляя зазоров. Такие узоры встречаются на рисунках на керамике, на решетках окон, на тротуарах и тканях. Они часто используются при вязании, плетении и вышивке.

Узоры на перилах, тканях и в мозаике, как правило, используют повторяющиеся мотивы, чтобы заполнить поверхность. Такие узоры обычно имеют геометрические формы.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное