Читаем Физика пространства - времени полностью

Диаграмма на рис. 151 изображает сохранение импульса в ходе предполагаемого дробления фотона на два других фотона, не сохраняющих его первоначального направления движения. Треугольник образован трёхмерными векторами импульса и построен в обычном трёхмерном эвклидовом пространстве. Поэтому сумма длин его боковых сторон должна быть больше длины основания, т.е.



Модуль импульса

первого

дочернего фотона


+


Модуль импульса

второго

дочернего фотона


>


>


Модуль импульса

исходного фотона


.


Однако импульс фотона по модулю равен его энергии. Значит, сумма энергий двух дочерних фотонов должна превосходить энергию исходного фотона, а это невозможно. Следовательно, одновременное сохранение и импульса, и энергии невозможно, если только фотоны — продукты дробления — не продолжают двигаться в том же направлении, в котором двигался первоначальный фотон. ▲

69. Давление света

а) Свет лампочки мощностью 1 вт приносит на поглощающую его поверхность 1 дж энергии каждую секунду. 1 дж эквивалентен энергии (массе), равной (1 дж)/𝑐²≈10⁻¹⁷ кг. Эта поверхность поглощает за одну секунду столько же импульса (выраженного в единицах массы); переход к обычным единицам осуществляется путём умножения на скорость света 𝑐 (см. стр. 141), что даёт в данном случае 3⋅10⁻⁹ кгм/сек импульса, поступающего на поглощающую поверхность в секунду. Это соответствует силе, равной 3⋅10⁻⁹ кгм/сек² т.е. 3⋅10⁻⁹ н.

б) Сила, действующая на каждый квадратный метр поглощающего спутника, в 1400 раз больше только что найденной, т.е. равна около 4⋅10⁻⁶ н. Когда свет падает на идеально отражающую поверхность, он отражается от неё в обратную сторону, так что изменение его импульса вдвое превышает полученную прежде величину — мы имеем теперь 8⋅10⁻⁶ н на каждый квадратный метр поверхности. В случае «реальных» поверхностей давление должно быть промежуточным между этими двумя значениями, цвет же поверхности играет роль лишь постольку, поскольку он характеризует её отражательную способность.

в) Запишем выражение для силы, действующей со стороны Солнца на частицу массы 𝑚 как 𝑚𝑎Солнце где 𝑎Солнце=𝐺𝑀/𝑅² — гравитационное ускорение, вызванное притяжением Солнца. (Что касается закона тяготения, см. введение к упражнению 73; вблизи Земли ускорение силы тяжести, вызываемое Солнцем, равно 6⋅10⁻³ м/сек² см. стр. 21). Сила, действующая со стороны солнечного света, представляет собой давление [см. часть б) этого упражнения], умноженное на эффективную поглощающую площадь частицы. Пусть частица имеет сферическую форму и полностью поглощает падающий на неё свет; тогда её поперечное сечение равно π𝑟². Обозначим давление солнечного света через 𝑃. Тогда отталкивающая сила будет равна 𝑃π𝑟², сила же гравитационного притяжения к Солнцу будет 𝑚𝑎Солнце. Нас интересует, каких размеров должна быть частица, чтобы эти силы в точности уравновешивали друг друга:


𝑚𝑎

Солнце

=

π𝑃𝑟²

.


Масса шарообразной частицы связана с её плотностью ρ и радиусом 𝑟 по формуле


𝑚

=

3

𝑟³ρ

.


Подставляя её в уравнение баланса сил, найдём оттуда величину критического радиуса


𝑟

=

3

4


𝑃

ρ𝑎Солнце

.


Чтобы определить численное значение 𝑟, необходимо задаться величиной плотности ρ; предположим поэтому, что она равна плотности воды, 10³ кг/м³. Используя также данные о давлении солнечного света вблизи Земли и о величине солнечного гравитационного ускорения в этой же области, найдём


𝑟

=

3

4


4⋅10⁻⁶ н/м²

(10³ кг/м³)(6⋅10⁻³ м/сек²)

=

5⋅10⁻⁷

м

.


Итак, частица должна быть довольно маленькой — радиусом примерно 1000 атомов. Интересно, что расстояние от Солнца при вычислениях сокращается. Отметим, что мы сделали здесь следующие предположения:

1) частица шарообразна,

2) частица полностью поглощает падающий на неё свет,

3) плотность частицы равна плотности воды. ▲

70. Эффект Комптона

В подписи к рис. 109 дано уравнение, выражающее закон сохранения импульса. Однако нас больше интересует здесь энергия, почему мы и произведём в нем замены


𝑝

=

𝐸

фотон

,

 


𝑝

=

𝐸

фотон

,

 


𝑃

²

=

𝐸

²-𝑚².


В результате получим уравнение


𝐸²

-

𝑚²

=

𝐸

фотон

²

+

𝐸

фотон

²

-

2

𝐸

фотон

𝐸

фотон

cos φ

,


в то время как собственно закон сохранения энергии даёт


𝐸

фотон

+

𝑚

=

𝐸

фотон

+

𝐸

,


если учесть, что электрон первоначально находился в покое, так что его полная энергия сводилась к энергии покоя 𝑚. Теперь нас не интересует энергия 𝐸 электрона после столкновения, и мы исключим её из полученных двух уравнений, получив, наконец, энергию фотона, рассеянного в направлении угла φ:


𝐸

фотон

=

𝐸

фотон

.


1

+

𝐸

фотон

(1-cos φ)


𝑚


Разделив левую и правую стороны этого равенства на массу покоя электрона 𝑚, рассмотрим случай, когда 𝐸фотон/𝑚=2:


𝐸фотон

𝑚

=

2

1+2(1-cos φ)

.


Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное
Эволюция физики
Эволюция физики

Книга Альберта Эйнштейна и Леопольда Инфельда знакомит читателя с развитием основных идей физики. В книге даётся «представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями», в ней показано, как каждая последующая, уточнённая картина мира закономерно сменяет предыдущую. Книга отражает известную среди специалистов эйнштейновскую оценку задач современной физики и её основных тенденций развития, которые в конечном счёте ведут к созданию единой физической теории. Мастерское изложение делает книгу А. Эйнштейна и Л. Инфельда доступной и для неспециалистов. Книга переведена на многие языки мира, неоднократно переиздавалась и переиздаётся в различных странах.

Альберт Эйнштейн , Леопольд Инфельд

Физика / Образование и наука