Читаем Квантовая механика и интегралы по траекториям полностью

Сумма трёх токовых членов представляет собой не что иное, как скалярное произведение 𝐣(𝐤,ω)⋅𝐣(𝐤,ω); поэтому выражение (9.89) — скаляр и его релятивистская инвариантность очевидна.

Учитывая неполноту наших сегодняшних представлений о квантовых законах взаимодействия, предположим, что расходящиеся интегралы можно регуляризировать простым введением в подынтегральное выражение релятивистски-инвариантного множителя



Λ²

ω²-𝑘²𝑐²-Λ²+𝑖ε


⎫²


где величина Λ — некоторая достаточно большая частота. При малых значениях величин ω и 𝑘 этот множитель близок к единице, в то время как для высоких частот он обрезает подынтегральную функцию. Очевидно, что такая операция не нарушает релятивистской инвариантности интеграла. Теперь все физические величины должны вычисляться нами с учётом того, что действие 𝐼+𝑆𝑐 содержит этот обрезающий множитель. Если, подобно лэмбовскому сдвигу они будут нечувствительны к выбору конкретного значения Λ (лишь бы это значение было достаточно велико), то теоретический результат можно считать достоверным. Если же результат расчёта существенно зависит от выбора Λ (как это имеет место, например, для разности масс нейтрального и заряженного пионов), то его количественную величину установить невозможно, поскольку обрезающая функция произвольна, а сам приём с её введением уже нельзя считать удовлетворительным.

Таково состояние квантовой электродинамики на сегодняшний день.

Задача 9.11. Покажите, что метод обрезающей функции действительно не является вполне удовлетворительным теоретически. Для этого покажите, что величина γ, вычислявшаяся в § 4 гл. 9, изменяется после введения обрезания, тогда как вероятность излучения реального фотона не должна изменяться (для него ω=𝑘𝑐 и функция обрезайия точно равна единице). Таким образом, нарушился бы баланс вероятностей и сумма их по всем возможным событиям (фотон излучился или не излучился) стала бы отличной от единицы.

Трудность, возникающая в связи с этой проблемой, до сих пор остаётся неразрешённой. Нам пока не известно никакой модификации квантовой электродинамики в области высоких частот, которая одновременно сделала бы все результаты конечными, не нарушала бы релятивистской инвариантности и сохраняла значение суммы вероятностей всех альтернатив равным единице.

Задача 9.12. Используя соотношение


𝑒

𝑖(𝐤⋅𝐑-ω𝑡)

𝑐𝑑³𝐤 𝑑ω/(2π)4

(2π)4(ω²-𝑘²𝑐²+𝑖ε)

=

𝑖

(𝑡²𝑐²-𝑅²+𝑖ε)(2π)²

=


=

1

δ

+

(𝑡²𝑐²-𝑅²)

.


(9.90)


перейдите в функции действия 𝐼+𝑆𝑐 к пространственным координатам. [Замечание: функцию -π𝑖(𝑥-𝑖ε) часто записывают как δ+(𝑥) мы тоже пользуемся этим обозначением.] В результате должно получиться


𝐼+𝑆

𝑐

=

1

2𝑐

[𝑐²

ρ(𝐑

1

,𝑡

1

)

ρ(𝐑

2

,𝑡

2

)

-

𝐣(𝐑

1

,𝑡

1

)

𝐣(𝐑

2

,𝑡

2

)


×

δ

+

[

(𝑡

1

-𝑡

2

𝑐²

-

|𝐑

1

-𝐑

2

]

𝑑³𝐑

1

𝑑³𝐑

2

𝑑𝑡

1

𝑑𝑡

2

.


(9.91)


§ 7. Излучение света

В § 4 гл. 9 мы нашли выражение для амплитуды вероятности того, что поведение материальной системы зависит от её взаимодействия с электромагнитным полем; это выражается формулой (9.60) и последующими выкладками. Однако наш вывод относился лишь к специальному случаю, когда начальное и конечное состояния поля являются вакуумными и не содержат фотонов. Мы видели, что при этом действие 𝑆част в интегралах по траекториям следует заменять на эффективное действие 𝑆'част=𝑆част+𝐼.

В общем случае фотоны поля присутствуют как в начале, так и в конце процесса. Для примера рассмотрим случай, когда в начальном состоянии нет ни одного фотона, а в конечном участвует один фотон с импульсом ℏ𝐋 и поляризацией 1. Единственное изменение, которое при этом вносится в наши предыдущие расчёты, касается интеграла для действия 𝑆, т.е. выражения (9.61). Теперь мы должны пользоваться соотношением


𝑋'

=

π

𝑘

exp


𝑖

(𝑆

част

+𝑆

поле

)

𝒟𝑎

1

𝑘

𝒟𝑎

2

𝑘

,


(9.92)


где интегрирование по траекториям выполняется между начальным состоянием вакуума и конечным, содержащим то же состояние вакуума плюс один фотон. В этом случае каждый осциллятор, кроме осциллятора 1𝐋, переходит из начального состояния 𝑛=0 в такое же конечное состояние; поэтому интеграл 𝑋1𝐤 для всех этих осцилляторов не изменяется. Изменится лишь вклад от осциллятора 1𝐋, который теперь становится равным


𝑋

'

1𝐤

=

exp


𝑖

(

𝑗

*

1𝐋

𝑎

1𝐋

+

𝑗

1𝐋

𝑎

*

1𝐋

)+


+

𝑎̇

*

1𝐋

𝑎̇


1𝐋

-

𝑘²𝑐²

𝑎

*

1𝐋

𝑎


1𝐋

-

ℏ𝐋𝑐

2


𝑑𝑡


𝒟𝑎

1𝐋


(9.93)


Это выражение такого же типа, как и выражение (9.63), за исключением того, что переход осциллятора совершается между состояниями 𝑛=0 и 𝑛=1, тогда как ранее конечное состояние считалось также вакуумным. В § 9 гл. 8 мы рассмотрели поведение гармонического осциллятора под действием внешней силы; теперь воспользуемся этим результатом и запишем


𝑋

'

1𝐤

=



2πℏ

𝐿𝑐


⎤½

𝑗

1𝐋

𝑒

𝑖𝐿𝑐𝑡

𝑑𝑡

𝑋


1𝐤

,


(9.94)


где 𝑋1𝐤 — вычислявшееся выше выражение для перехода из вакуумного в вакуумное состояние. Мы видим, что появление одного фотона в конечном состоянии выражается в появлении множителя



2πℏ

𝐿𝑐


⎤½

𝑗

1𝐋

𝑒

𝑖𝐿𝑐

𝑑𝑡


Поэтому для амплитуды вероятности мы можем записать


Амплитуда

=


2πℏ

𝐿𝑐


⎤½

exp


𝑖

(𝑆

част

+𝐼)

𝑗

1𝐋

exp(𝑖𝐿𝑐𝑡)

𝑑𝑡

𝒟𝑞

.


(9.95)


Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука