Читаем Квантовая механика и интегралы по траекториям полностью

где φ'0 — нормированная волновая функция, соответствующая низшему энергетическому состоянию системы с гамильтонианом (11.45). Отметим, что оценка наименьшей энергии (11.49) зависит от произвольного потенциала 𝑉'(𝑥) только лишь через волновую функцию φ'0. В силу неопределённости потенциала произвольной является и функция φ'0. Поэтому вместо того, чтобы подбирать потенциал 𝑉', находить по нему соответствующую волновую функцию и потом переходить к вычислению соотношения (11.49), мы могли бы подобрать волновую функцию и потом вычислить правую часть (11.49), совершенно не заботясь о потенциале, которому отвечает эта волновая функция. При таком подходе переменной является скорее волновая функция φ'0, а не потенциал 𝑉'(𝑥). Отсюда видно, что полученный результат — просто другой способ толкования соотношения (11.33).

Если бы все задачи были такими, как в данном примере, когда оказывается применимым выражение (11.13), то не возникало бы оснований для столь длинных рассуждений. Однако существуют значительно более сложные интегралы, для которых выражение (11.13), по крайней мере в той степени, насколько мы можем сейчас об этом судить, не столь просто преобразуется к соотношению (11.33). Такой пример мы рассмотрим в следующем параграфе.

§ 4. Медленные электроны в ионном кристалле 21)

21 См. работу [8].

Пусть электрон движется в ионном кристалле, например в кристалле хлористого натрия. При этом он взаимодействует с ионами, которые не являются жёстко закреплёнными, и создаёт вокруг себя искажение кристаллической решётки. Если электрон движется, то область возмущения перемещается вместе с ним. Такой электрон вместе с возмущаемой им окрестностью был назван поляроном.

Вследствие возмущения решётки энергия электрона уменьшается. Кроме того, поскольку электрон перемещается и ионы должны двигаться согласованно с возмущением, то эффективная масса электрона (или, применяя общепринятый термин — масса полярона) превосходит значение массы, которое получилось бы, если решётка состояла бы из жёстко закреплённых точек. Точный квантовомеханический анализ движения такого полярона чрезвычайно сложен, и мы сделаем некоторые допущения, удовлетворить которым в реальном случае, вероятно, весьма трудно. Тем не менее мы вслед за рядом физиков будем рассматривать такую идеализированную задачу [9] не только потому, что она, возможно, отражает реальное поведение электрона в кристалле, но также и потому, что она является одним из простейших примеров взаимодействия частицы и поля. Вариационный метод вычисления интегралов по траекториям оказывается в этом случае весьма плодотворным.

Сначала отметим, что даже если бы ионы были жёстко закреплены в кристалле, тем не менее электрон двигался бы в очень сложном потенциальном поле. При этом можно показать, что существуют решения уравнения Шрёдингера для электрона с определёнными волновыми числами 𝐤. Энергетические уровни в этих решениях обычно являются весьма сложными функциями волнового числа. Тем не менее мы предположим, что связь между энергией 𝐸 и волновым числом 𝐤 квадратична:

𝐸

=

ℏ²𝑘²

2𝑚

,

(11.50)

где 𝑚 — постоянная величина, не обязательно равная массе электрона в вакууме. Далее заметим, что при воздействии электрона на решётку отрицательные ионы отталкиваются, а положительные притягиваются. Движение ионов можно исследовать, рассматривая их как набор гармонических осцилляторов и применяя методы гл. 8. Однако мы предположим, что возникают только такие высокочастотные гармоники, в которых ионы с разным зарядом движутся в противоположных направлениях. Частота гармоники ω𝐤 зависит от волнового числа соответствующего собственного колебания, но мы пренебрежём этой зависимостью и будем считать, что ω — постоянная величина.

Наша задача заключается в том, чтобы найти электрическую силу, создаваемую возмущением, характеризуемым волновым числом 𝐤, и определить движение электрона под действием этой силы. Пренебрежём пока атомной структурой и будем рассматривать вещество нашего кристалла просто как непрерывный диэлектрик, в котором распространяются волны поляризации. Если 𝐏 — вектор поляризации, имеющий вид продольной волны

𝐏

=

𝐤

𝑘

𝑎

𝑘

𝑒

𝑖𝐤⋅𝐫

,

(11.51)

то плотность заряда ионов равна

𝛒

=

𝛁⋅𝐏

=

𝑘

𝑎

𝑘

𝑒

𝑖𝐤⋅𝐫

(11.52)

Если 𝑉 — потенциал, то

𝛁²𝑉

=

𝛒

.

(11.53)

Поэтому если 𝑞𝑘 — амплитуда 𝑘-й продольной бегущей волны, то поляризация 𝑎𝑘 пропорциональна 𝑞𝑘 и взаимодействие между волной поляризации и электроном пропорцинально сумме членов вида (𝑞𝑘/𝑘) exp(𝑖𝐤⋅𝐱)по всем 𝐤.

Так как энергия и импульс электрона связаны выражением 𝐸=𝑝²/2𝑚, то мы можем записать лагранжиан всей системы в виде

𝐿

=

1

2

|𝐫̇|²

+

 

𝐤

1

2

(𝑞

2

𝑘

-

𝑞

2

𝐤

)+

2√2πα

𝑉

⎫½

 

𝐤

1

𝑘

𝑞

𝑘

𝑒

𝑖𝐤⋅𝐫

(11.54)

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука