Читаем Квантовая механика и интегралы по траекториям полностью

Отметим одно приближение к функционалу (12.24), которое часто оказывается точным. В общем случае λ(τ) — узкая, пикообразная функция от τ. Нарастание и спад формы сигнала 𝑔(𝑡) характеризуется конечной шириной, так что если два сигнала разделены достаточно большим промежутком времени, то у них нет области перекрытия. Другими словами, λ(τ) быстро стремится к нулю при увеличении τ. Поэтому, если λ(τ) имеет достаточно узкий профиль, второй член в уравнении (12.24) может быть аппроксимирован выражением

𝑒

-(𝑞/2)∫[𝑘(𝑡)]²𝑑𝑡

,

(12.25)

где обозначено

𝑞

=

μ

-∞

λ

𝑑τ

.

Это эквивалентно распределению вероятности

𝑃[𝑓(𝑡)]

=

𝑒

-(𝑞/2)∫[𝑓(𝑡)]²𝑑𝑡

.

(12.26)

Флуктуации, подобные тем, что мы сейчас рассматриваем, часто называют гауссовым шумом.

Характеристики функционалов вероятности, описывающих шумовые функции, последнее время широко обсуждались в теории связи, причём многие характеристики шумового спектра были определены и вычислены. Аналогичное рассмотрение проведём здесь и в следующем параграфе, где рассматриваются гауссовы шумы.

Покажем ещё на одном примере, как выводятся характеристические функционалы. Рассмотрим сигналы, которые приходят в случайные моменты времени и для которых задана характеристическая форма, например, в виде 𝑢(𝑡), но различен масштабный весовой множитель, так что типичный сигнал запишется как 𝑎𝑢(𝑡). Можно также допустить, что вес 𝑎 может быть либо положительным, либо отрицательным. Пусть сигналы приходят в какие-то моменты времени 𝑡𝑗, а их веса принимают случайные положительные и отрицательные значения 𝑎𝑗. Тогда результирующая функция представляется выражением

𝑓(𝑡)

=

 

𝑗

𝑎

𝑗

𝑢(𝑡-𝑡

𝑗

)

.

(12.27)

Если отвлечься от случайной природы событий, то мы получим характеристический функционал, эквивалентный функционалу (12.16);

Φ

=

exp

𝑖

 

𝑗

𝑎

𝑗

𝑘(𝑡)

𝑢(𝑡-𝑡

𝑗

)

𝑑𝑡

.

(12.28)

Если учесть теперь случайную природу весовых масштабных множителей сигналов и обозначить вероятность обнаружения весового множителя, соответствующего 𝑗-му сигналу, в интервале 𝑑𝑎𝑗 через 𝑝(𝑎𝑗)𝑑𝑎𝑗, то характеристический функционал будет иметь вид

Φ

=

𝑖

 

𝑗

𝑎

𝑗

𝑘(𝑡)

𝑢(𝑡-𝑡

𝑗

)

𝑑𝑡

×

×

𝑝(𝑎

1

)𝑑𝑎

1

𝑝(𝑎

2

)𝑑𝑎

2

.

(12.29)

Конечно, каждая из вероятностных функций для величин 𝑎𝑗 обладает соответствующей ей характеристической функцией (или производящей функцией для моментов). Назовём эту функцию 𝑊[ω] и определим её равенством

𝑊[ω]

=

𝑒

𝑖ω𝑎

𝑝(𝑎)𝑑𝑎

.

(12.30)

Тогда выражение для Φ можно записать в виде

Φ

=

 

𝑗

𝑊

𝑘(𝑡)

𝑢(𝑡-𝑡

𝑗

)

𝑑𝑡

.

(12.31)

Далее мы можем действовать как при выводе выражения (12.17) и допустить, что моменты появления сигналов случайно распределены по интервалу 0≤𝑡≤𝑇. Если мы предположим, что в этом интервале имеется точно 𝑛 импульсов, то получим характеристический функционал

Φ

=

γ

𝑇

⎫𝑛

(12.32)

где

γ

=

𝑊

𝑘(𝑡)

𝑢(𝑡-𝑠)

𝑑𝑡

𝑑𝑠

.

(12.33)

Если теперь, как и при выводе (12.18), предположить, что распределение числа сигналов во времени описывается функцией Пуассона, то выражение (12.32) надо умножить на 𝑛𝑛𝑒-𝑛/𝑛!, где, как прежде, 𝑛=μ𝑇 — среднее число сигналов за время 𝑇. Суммируя по 𝑛, получаем

Φ

=

𝑒

-μ(𝑇-γ)

=

exp

1-

𝑊

𝑘(𝑡)

𝑢(𝑡-𝑠)

𝑑𝑡

𝑑𝑠

.

(12.34)

В качестве конкретного примера использования полученного результата рассмотрим очень узкий сигнал. Более того, предположим, что его форму можно аппроксимировать δ-функцией, т.е. 𝑢(𝑡)=δ(𝑡). Тогда характеристический функционал

Φ

=

{1-𝑊[𝑘(𝑠)]}

𝑑𝑠

.

(12.35)

Предположим далее, что весовые множители имеют гауссово распределение с нулевым средним значением и среднеквадратичным отклонением, равным σ; другими словами, допустим, что эти множители имеют обычное нормальное распределение

𝑝(𝑎)𝑑𝑎

=

1

√2πσ

𝑒

-𝑎²/2σ²

𝑑𝑎

.

(12.36)

В этом случае характеристическая функция

𝑊[ω]

=

𝑒

-σ²ω²/2

(12.37)

приводит к следующему выражению для Φ:

Φ[𝑘(𝑡)]

=

exp

(1-𝑒

-(σ²/2)[𝑘(𝑠)]²

)

𝑑𝑠

.

(12.38)

Итак, мы снова установили, что, выбирая исходные предположения, можно вывести соответствующий характеристический потенциал. На любой стадии вывода допустима обоснованная аппроксимация, сводящая функционал к квадратичному виду. Например, в только что описанном случае малая величина среднеквадратичного масштабного множителя σ соответствует слабым сигналам. Если к тому же среднее число сигналов, приходящихся на временной интервал, велико, то (12.38) достаточно хорошо аппроксимируется выражением

Φ

=

exp

-

μσ²

2

[𝑘(𝑡)]²

𝑑𝑡

(12.39)

Такое распределение называется белым шумом.

§ 4. Гауссовы шумы

Распределения с гауссовым характеристическим функционалом встречаются во многих ситуациях; эти распределения мы теперь и рассмотрим.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука