Упражнение 5.61.
Для неоднородно уширенного спинового ансамбля с неоднородной шириной Δ0, много большей, чем обратные времена релаксацииВ стационарном базисе этот магнитный момент будет прецессировать вокруг оси
Выполняя это упражнение, вы, возможно, заметили одну тонкость. Чтобы рассчитать спиновый эхо-сигнал, нам пришлось усреднить вектор Блоха по ансамблю, включающему в себя все отстройки. Но состояние, связанное с каждой конкретной отстройкой, само по себе не является чистым (из-за однородной релаксации), а это означает, что оно тоже представляет некоторый ансамбль, как уже говорилось ранее в этой главе.
Мы обращались с этими ансамблями совершенно по-разному. При декогеренции и термализации мы непрерывно усредняли по ансамблю в ходе всей эволюции (см. упр. 5.53), учитывая таким образом в реальном времени влияние этих явлений на спиновое состояние. Но при работе с неоднородно уширенным ансамблем усреднение проводилось только один раз, в конце вычислений. Почему такая разница?
Причина в том, что эти два типа ансамблей порождает разная физика. Однородная релаксация возникает из-за запутывающего взаимодействия между системой и средой. Поскольку среда нам не подконтрольна, мы можем отбрасывать ее (т. е. вычислять частичный след по ней) без потери какой бы то ни было ценной информации; так что состояние системы становится необратимо смешанным. Неоднородное уширение, напротив, вызывается не запутыванием, а небольшой разницей физических условий (и гамильтонианов), в которых эволюционирует каждый спин. Более того, эти условия не меняются со временем. Поэтому эволюция каждого отдельного члена ансамбля полностью предсказуема и обратима. Мы должны отслеживать эту эволюцию без преждевременного усреднения, чтобы иметь возможность предсказать синхронизацию спинов и эхо.
Теперь обратимся ко времени продольной релаксации. Его можно измерить, например, при помощи
Чтобы измерить длину вектора Блоха после того, как он прорелаксирует в течение некоторого времени
Упражнение 5.62.
Покажите, что при измерении перехода через нуль сигнал свободной индукции пропадет для5.6. Обобщенные измерения*
Аппарат операторов плотности обобщает постулат квантовой механики о гильбертовом пространстве, учитывая возможность того, что мы можем не иметь полной информации о квантовом состоянии. Постулат об измерениях можно расширить аналогичным образом, чтобы учесть реалистичные квантовые измерительные устройства.
Рассмотрим, например, устройство для измерения поляризации, показанное на рис. 1.2a. В идеальном случае оно измеряет поляризацию фотона в каноническом базисе. Предположим, однако, что светоделитель не идеален: он может пропустить некоторую часть вертикальной поляризации и отразить часть горизонтальной. Чтобы учесть эту особенность, мы вводим понятие
• щелкает детектор в пропускающем канале;
• щелкает детектор в отражающем канале.
Далее мы моделируем наше устройство как идеальное проективное измерение в некотором базисе {|𝑣i
⟩}, за которым следует «скремблер» (рис. 5.2). Скремблер представляет собой классическое устройство, функционирующее так: для каждого выхода |𝑣i⟩ квантового измерения оно случайным образом, с вероятностью μji, выбираетУпражнение 5.63.
Рассмотрим реалистичный детектор поляризации, состоящий из идеального проективного измерения поляризации в каноническом базисе и скремблера, который отображает результаты измерения на выходные состояния, помеченные