Читаем Отличная квантовая механика полностью

• Пусть у Алисы будет канонический базис, у Боба же — диагональный, а затем круговой. Используя элементы матрицы плотности, известные нам после первого шага, определите еще четыре элемента.

• Теперь пусть базис Боба будет каноническим, а базис Алисы — диагональным и круговым. Можно найти еще четыре элемента матрицы.

• Оставшиеся элементы матрицы плотности можно оценить на основе измерений в четырех оставшихся двусоставных базисах.

В упражнении 5.77 размерность гильбертова пространства равна N = 2, а число используемых базисов составляет N + 1 = 3, что совпадает с найденным нами минимальным значением. В упр. 5.78, в свою очередь, N = 4, тогда как число базисов равно девяти. Это означает, что мы можем подумать об оптимизации нашего решения использованием в нем меньшего числа базисов. Однако следует позаботиться и о том, чтобы эти «оптимизированные» базисы не слишком сложно было реализовать в практической экспериментальной установке.

Из упражнения 5.78 мы можем извлечь еще один важный урок. Дело в том, что, хотя двусоставное гильбертово пространство содержит запутанные состояния, полная его томография не требует измерений в запутанных базисах. Иными словами, измерительные приборы Алисы и Боба не обязаны быть связаны между собой квантовой корреляцией. Это, конечно, большое облегчение для экспериментаторов.

5.7.2. Томография квантового процесса

Под квантовым процессом мы понимаем некий черный ящик, выполняющий какую-то обработку квантовых состояний (рис. 5.4). Для исходного состояния выходное состояние процесса обозначается Цель томографии квантового процесса (QPT, quantum process tomography) — получить достаточно информации о черном ящике, чтобы иметь возможность предсказывать его действие на произвольное исходное состояние. Для получения этой информации на вход черного ящика посылают множество копий определенных пробных состояний и производят томографию квантовых состояний на его выходе, чтобы найти для каждого пробного состояния.

В начале этого курса (разд. 1.10) мы узнали, что квантовая эволюция представлена унитарными линейными операторами (где Ĥ — гамильтониан). Однако, как мы вскоре увидим, это не всегда верно для произвольного квантового процесса. Тем не менее начнем обсуждение QPT с черного ящика, о котором a priori известно, что он описывается некоторым линейным оператором.


Упражнение 5.79. Предположим, что процесс описывается линейным оператором Û и для каждого элемента некоторого ортонормального базиса {|𝑣i⟩} гильбертова пространства известно состояние Û|𝑣i⟩. Найдите матрицу плотности выходного состояния процесса если задан оператор плотности исходного состояния [129].

Согласно данному результату, чтобы полностью характеризовать процесс, описываемый линейным оператором, достаточно зондировать его состояниями из любого базиса гильбертова пространства.

Однако квантовые процессы являются унитарными операторами только в том случае, когда интересующая нас система не взаимодействует с внешним миром («средой»). Если такое взаимодействие имеет место, система и среда становятся запутанными. Тогда нам, чтобы определить конечное состояние системы, необходимо брать частичный след по среде. Эта необратимая операция делает весь процесс не-унитарным.

Рассмотрим, например, декогеренцию частицы со спином 1/2, для которой предпочтительным является канонический базис. Состояния |↑⟩ и |↓⟩ эта декогеренция не затрагивает: E(|↑⟩⟨↑|) = |↑⟩⟨↑| и E(|↓⟩⟨↓|) = |↓⟩⟨↓|. Однако любая линейная комбинация |ψ⟩ = α|↑⟩ + β|↓⟩ становится статистической смесью: E(|ψ⟩⟨ψ|) = |α|2|↑⟩⟨↑| + |β|2|↓⟩⟨↓|. Если единственной доступной нам информацией является действие процесса на базисные состояния |↑⟩ и |↓⟩, мы не можем отличить этот процесс от единичного процесса

После всего этого может показаться, что томография квантового процесса — задача практически нерешаемая. Взаимодействие систем и сред может быть каким угодно. А поскольку информация о среде недоступна, определить все свойства процесса, измеряя только систему, казалось бы, невозможно. Однако на самом деле, к счастью, это не так, и в следующем упражнении мы в этом убедимся.


Упражнение 5.80. Покажите, что любой процесс должен быть линейным по отношению к матрице плотности, т. е.

Подсказка: воспользуйтесь вероятностной природой оператора плотности (см. упр. 5.22).


Упражнение 5.81. Покажите, что в линейном пространстве всех линейных операторов на гильбертовом пространстве размерности N (см. упр. A.42) можно построить базис, который будет состоять исключительно из операторов плотности физических квантовых состояний.

Подсказка: рассмотрите, например, множество Q, которое включает в себя:

где {|𝑣k⟩} есть произвольный ортонормальный базис гильбертова пространства.


Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука